statsmodels.tsa.holtwinters.HoltWintersResults

class statsmodels.tsa.holtwinters.HoltWintersResults(model, params, sse, aic, aicc, bic, optimized, level, trend, season, params_formatted, resid, k, fittedvalues, fittedfcast, fcastvalues, mle_retvals=None)[source]

Results from fitting Exponential Smoothing models.

Parameters:
model : ExponentialSmoothing instance

The fitted model instance.

params : dict

All the parameters for the Exponential Smoothing model.

sse : float

The sum of squared errors.

aic : float

The Akaike information criterion.

aicc : float

AIC with a correction for finite sample sizes.

bic : float

The Bayesian information criterion.

optimized : bool

Flag indicating whether the model parameters were optimized to fit the data.

level : ndarray

An array of the levels values that make up the fitted values.

trend : ndarray

An array of the trend values that make up the fitted values.

season : ndarray

An array of the seasonal values that make up the fitted values.

params_formatted : pd.DataFrame

DataFrame containing all parameters, their short names and a flag indicating whether the parameter’s value was optimized to fit the data.

resid : ndarray

An array of the residuals of the fittedvalues and actual values.

k : int

The k parameter used to remove the bias in AIC, BIC etc.

fittedvalues : ndarray

An array of the fitted values. Fitted by the Exponential Smoothing model.

fittedfcast : ndarray

An array of both the fitted values and forecast values.

fcastvalues : ndarray

An array of the forecast values forecast by the Exponential Smoothing model.

mle_retvals : {None, scipy.optimize.optimize.OptimizeResult}

Optimization results if the parameters were optimized to fit the data.

Methods

forecast([steps])

Out-of-sample forecasts

initialize(model, params, **kwargs)

Initialize (possibly re-initialize) a Results instance.

predict([start, end])

In-sample prediction and out-of-sample forecasting

simulate(nsimulations[, anchor, ...])

Random simulations using the state space formulation.

summary()

Summarize the fitted Model

Properties

aic

The Akaike information criterion.

aicc

AIC with a correction for finite sample sizes.

bic

The Bayesian information criterion.

fcastvalues

An array of the forecast values

fittedfcast

An array of both the fitted values and forecast values.

fittedvalues

An array of the fitted values

k

The k parameter used to remove the bias in AIC, BIC etc.

level

An array of the levels values that make up the fitted values.

mle_retvals

Optimization results if the parameters were optimized to fit the data.

model

The model used to produce the results instance.

optimized

Flag indicating if model parameters were optimized to fit the data.

params_formatted

DataFrame containing all parameters

resid

An array of the residuals of the fittedvalues and actual values.

season

An array of the seasonal values that make up the fitted values.

sse

The sum of squared errors between the data and the fittted value.

trend

An array of the trend values that make up the fitted values.