Source code for statsmodels.stats.lilliefors

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 13:16:49 2011

Author: Josef Perktold
License: BSD-3

pvalues for Lilliefors test are based on formula and table in

An Analytic Approximation to the Distribution of Lilliefors's Test Statistic for Normality
Author(s): Gerard E. Dallal and Leland WilkinsonSource: The American Statistician, Vol. 40, No. 4 (Nov., 1986), pp. 294-296Published by: American Statistical AssociationStable URL: http://www.jstor.org/stable/2684607 .

On the Kolmogorov-Smirnov Test for Normality with Mean and Variance
Unknown
Hubert W. Lilliefors
Journal of the American Statistical Association, Vol. 62, No. 318. (Jun., 1967), pp. 399-402.

"""
from statsmodels.compat.python import string_types
import numpy as np
from scipy.interpolate import interp1d
from scipy import stats

def ksstat(x, cdf, alternative='two_sided', args=()):
    """
    Calculate statistic for the Kolmogorov-Smirnov test for goodness of fit

    This calculates the test statistic for a test of the distribution G(x) of an observed
    variable against a given distribution F(x). Under the null
    hypothesis the two distributions are identical, G(x)=F(x). The
    alternative hypothesis can be either 'two_sided' (default), 'less'
    or 'greater'. The KS test is only valid for continuous distributions.

    Parameters
    ----------
    x : array_like, 1d
        array of observations
    cdf : string or callable
        string: name of a distribution in scipy.stats
        callable: function to evaluate cdf
    alternative : 'two_sided' (default), 'less' or 'greater'
        defines the alternative hypothesis (see explanation)
    args : tuple, sequence
        distribution parameters for call to cdf


    Returns
    -------
    D : float
        KS test statistic, either D, D+ or D-

    See Also
    --------
    scipy.stats.kstest

    Notes
    -----

    In the one-sided test, the alternative is that the empirical
    cumulative distribution function of the random variable is "less"
    or "greater" than the cumulative distribution function F(x) of the
    hypothesis, G(x)<=F(x), resp. G(x)>=F(x).

    In contrast to scipy.stats.kstest, this function only calculates the
    statistic which can be used either as distance measure or to implement
    case specific p-values.

    """
    nobs = float(len(x))

    if isinstance(cdf, string_types):
        cdf = getattr(stats.distributions, cdf).cdf
    elif hasattr(cdf, 'cdf'):
        cdf = getattr(cdf, 'cdf')

    x = np.sort(x)
    cdfvals = cdf(x, *args)

    if alternative in ['two_sided', 'greater']:
        Dplus = (np.arange(1.0, nobs+1)/nobs - cdfvals).max()
        if alternative == 'greater':
            return Dplus

    if alternative in ['two_sided', 'less']:
        Dmin = (cdfvals - np.arange(0.0, nobs)/nobs).max()
        if alternative == 'less':
            return Dmin

    D = np.max([Dplus,Dmin])
    return D


#new version with tabledist
#--------------------------

def get_lilliefors_table():
    #function just to keep things together
    from .tabledist import TableDist
    #for this test alpha is sf probability, i.e. right tail probability

    alpha = np.array([ 0.2  ,  0.15 ,  0.1  ,  0.05 ,  0.01 ,  0.001])[::-1]
    size = np.array([ 4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
                     16,  17,  18,  19,  20,  25,  30,  40, 100, 400, 900], float)

    #critical values, rows are by sample size, columns are by alpha
    crit_lf = np.array(   [[303, 321, 346, 376, 413, 433],
                           [289, 303, 319, 343, 397, 439],
                           [269, 281, 297, 323, 371, 424],
                           [252, 264, 280, 304, 351, 402],
                           [239, 250, 265, 288, 333, 384],
                           [227, 238, 252, 274, 317, 365],
                           [217, 228, 241, 262, 304, 352],
                           [208, 218, 231, 251, 291, 338],
                           [200, 210, 222, 242, 281, 325],
                           [193, 202, 215, 234, 271, 314],
                           [187, 196, 208, 226, 262, 305],
                           [181, 190, 201, 219, 254, 296],
                           [176, 184, 195, 213, 247, 287],
                           [171, 179, 190, 207, 240, 279],
                           [167, 175, 185, 202, 234, 273],
                           [163, 170, 181, 197, 228, 266],
                           [159, 166, 176, 192, 223, 260],
                           [143, 150, 159, 173, 201, 236],
                           [131, 138, 146, 159, 185, 217],
                           [115, 120, 128, 139, 162, 189],
                           [ 74,  77,  82,  89, 104, 122],
                           [ 37,  39,  41,  45,  52,  61],
                           [ 25,  26,  28,  30,  35,  42]])[:,::-1] / 1000.


    lf = TableDist(alpha, size, crit_lf)

    return lf

lillifors_table = get_lilliefors_table()

def pval_lf(Dmax, n):
    '''approximate pvalues for Lilliefors test of normality

    This is only valid for pvalues smaller than 0.1 which is not checked in
    this function.

    Parameters
    ----------
    Dmax : array_like
        two-sided Kolmogorov-Smirnov test statistic
    n : int or float
        sample size

    Returns
    -------
    p-value : float or ndarray
        pvalue according to approximation formula of Dallal and Wilkinson.

    Notes
    -----
    This is mainly a helper function where the calling code should dispatch
    on bound violations. Therefore it doesn't check whether the pvalue is in
    the valid range.

    Precision for the pvalues is around 2 to 3 decimals. This approximation is
    also used by other statistical packages (e.g. R:fBasics) but might not be
    the most precise available.

    References
    ----------
    DallalWilkinson1986

    '''

    #todo: check boundaries, valid range for n and Dmax
    if n>100:
        Dmax *= (n/100.)**0.49
        n = 100
    pval = np.exp(-7.01256*Dmax**2 *(n + 2.78019)
                + 2.99587 * Dmax * np.sqrt(n + 2.78019) - 0.122119
                + 0.974598/np.sqrt(n) + 1.67997/n)
    return pval


[docs]def kstest_normal(x, pvalmethod='approx'): '''Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance Parameters ---------- x : array_like, 1d data series, sample pvalmethod : 'approx', 'table' 'approx' uses the approximation formula of Dalal and Wilkinson, valid for pvalues < 0.1. If the pvalue is larger than 0.1, then the result of `table` is returned 'table' uses the table from Dalal and Wilkinson, which is available for pvalues between 0.001 and 0.2, and the formula of Lilliefors for large n (n>900). Values in the table are linearly interpolated. Values outside the range will be returned as bounds, 0.2 for large and 0.001 for small pvalues. Returns ------- ksstat : float Kolmogorov-Smirnov test statistic with estimated mean and variance. pvalue : float If the pvalue is lower than some threshold, e.g. 0.05, then we can reject the Null hypothesis that the sample comes from a normal distribution Notes ----- Reported power to distinguish normal from some other distributions is lower than with the Anderson-Darling test. could be vectorized ''' x = np.asarray(x) z = (x-x.mean())/x.std(ddof=1) nobs = len(z) d_ks = ksstat(z, stats.norm.cdf, alternative='two_sided') if pvalmethod == 'approx': pval = pval_lf(d_ks, nobs) elif pvalmethod == 'table': #pval = pval_lftable(d_ks, nobs) pval = lillifors_table.prob(d_ks, nobs) return d_ks, pval
lillifors = kstest_normal #old version: #------------ tble = '''\ 00 20 15 10 05 01 .1 4 .303 .321 .346 .376 .413 .433 5 .289 .303 .319 .343 .397 .439 6 .269 .281 .297 .323 .371 .424 7 .252 .264 .280 .304 .351 .402 8 .239 .250 .265 .288 .333 .384 9 .227 .238 .252 .274 .317 .365 10 .217 .228 .241 .262 .304 .352 11 .208 .218 .231 .251 .291 .338 12 .200 .210 .222 .242 .281 .325 13 .193 .202 .215 .234 .271 .314 14 .187 .196 .208 .226 .262 .305 15 .181 .190 .201 .219 .254 .296 16 .176 .184 .195 .213 .247 .287 17 .171 .179 .190 .207 .240 .279 18 .167 .175 .185 .202 .234 .273 19 .163 .170 .181 .197 .228 .266 20 .159 .166 .176 .192 .223 .260 25 .143 .150 .159 .173 .201 .236 30 .131 .138 .146 .159 .185 .217 40 .115 .120 .128 .139 .162 .189 100 .074 .077 .082 .089 .104 .122 400 .037 .039 .041 .045 .052 .061 900 .025 .026 .028 .030 .035 .042''' ''' parr = np.array([line.split() for line in tble.split('\n')],float) size = parr[1:,0] alpha = parr[0,1:] / 100. crit = parr[1:, 1:] alpha = np.array([ 0.2 , 0.15 , 0.1 , 0.05 , 0.01 , 0.001]) size = np.array([ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 100, 400, 900], float) #critical values, rows are by sample size, columns are by alpha crit_lf = np.array( [[303, 321, 346, 376, 413, 433], [289, 303, 319, 343, 397, 439], [269, 281, 297, 323, 371, 424], [252, 264, 280, 304, 351, 402], [239, 250, 265, 288, 333, 384], [227, 238, 252, 274, 317, 365], [217, 228, 241, 262, 304, 352], [208, 218, 231, 251, 291, 338], [200, 210, 222, 242, 281, 325], [193, 202, 215, 234, 271, 314], [187, 196, 208, 226, 262, 305], [181, 190, 201, 219, 254, 296], [176, 184, 195, 213, 247, 287], [171, 179, 190, 207, 240, 279], [167, 175, 185, 202, 234, 273], [163, 170, 181, 197, 228, 266], [159, 166, 176, 192, 223, 260], [143, 150, 159, 173, 201, 236], [131, 138, 146, 159, 185, 217], [115, 120, 128, 139, 162, 189], [ 74, 77, 82, 89, 104, 122], [ 37, 39, 41, 45, 52, 61], [ 25, 26, 28, 30, 35, 42]]) / 1000. #original Lilliefors paper crit_greater30 = lambda n: np.array([0.736, 0.768, 0.805, 0.886, 1.031])/np.sqrt(n) alpha_greater30 = np.array([ 0.2 , 0.15 , 0.1 , 0.05 , 0.01 , 0.001]) n_alpha = 6 polyn = [interp1d(size, crit[:,i]) for i in range(n_alpha)] def critpolys(n): return np.array([p(n) for p in polyn]) def pval_lftable(x, n): #returns extrem probabilities, 0.001 and 0.2, for out of range critvals = critpolys(n) if x < critvals[0]: return alpha[0] elif x > critvals[-1]: return alpha[-1] else: return interp1d(critvals, alpha)(x) for n in [19, 19.5, 20, 21, 25]: print critpolys(n) print pval_lftable(0.166, 20) print pval_lftable(0.166, 21) print 'n=25:', '.103 .052 .010' print [pval_lf(x, 25) for x in [.159, .173, .201, .236]] print 'n=10', '.103 .050 .009' print [pval_lf(x, 10) for x in [.241, .262, .304, .352]] print 'n=400', '.104 .050 .011' print [pval_lf(x, 400) for x in crit[-2,2:-1]] print 'n=900', '.093 .054 .011' print [pval_lf(x, 900) for x in crit[-1,2:-1]] print [pval_lftable(x, 400) for x in crit[-2,:]] print [pval_lftable(x, 300) for x in crit[-3,:]] xx = np.random.randn(40) print kstest_normal(xx) xx2 = np.array([ 1.138, -0.325, -1.461, -0.441, -0.005, -0.957, -1.52 , 0.481, 0.713, 0.175, -1.764, -0.209, -0.681, 0.671, 0.204, 0.403, -0.165, 1.765, 0.127, -1.261, -0.101, 0.527, 1.114, -0.57 , -1.172, 0.697, 0.146, 0.704, 0.422, 0.63 , 0.661, 0.025, 0.177, 0.578, 0.945, 0.211, 0.153, 0.279, 0.35 , 0.396]) ( 1.138, -0.325, -1.461, -0.441, -0.005, -0.957, -1.52 , 0.481, 0.713, 0.175, -1.764, -0.209, -0.681, 0.671, 0.204, 0.403, -0.165, 1.765, 0.127, -1.261, -0.101, 0.527, 1.114, -0.57 , -1.172, 0.697, 0.146, 0.704, 0.422, 0.63 , 0.661, 0.025, 0.177, 0.578, 0.945, 0.211, 0.153, 0.279, 0.35 , 0.396) r_lillieTest = [0.15096827429598147, 0.02225473302348436] print kstest_normal(xx2), np.array(kstest_normal(xx2)) - r_lillieTest print kstest_normal(xx2, 'table') '''