Source code for statsmodels.tsa.stattools

"""
Statistical tools for time series analysis
"""
from statsmodels.compat.python import (iteritems, range, lrange, string_types, lzip,
                                zip, map)
import numpy as np
from numpy.linalg import LinAlgError
from scipy import stats
from statsmodels.regression.linear_model import OLS, yule_walker
from statsmodels.tools.tools import add_constant, Bunch
from .tsatools import lagmat, lagmat2ds, add_trend
from .adfvalues import mackinnonp, mackinnoncrit
from statsmodels.tsa.arima_model import ARMA
from statsmodels.compat.scipy import _next_regular

__all__ = ['acovf', 'acf', 'pacf', 'pacf_yw', 'pacf_ols', 'ccovf', 'ccf',
           'periodogram', 'q_stat', 'coint', 'arma_order_select_ic',
           'adfuller']


#NOTE: now in two places to avoid circular import
#TODO: I like the bunch pattern for this too.
class ResultsStore(object):
    def __str__(self):
        return self._str  # pylint: disable=E1101


def _autolag(mod, endog, exog, startlag, maxlag, method, modargs=(),
             fitargs=(), regresults=False):
    """
    Returns the results for the lag length that maximimizes the info criterion.

    Parameters
    ----------
    mod : Model class
        Model estimator class.
    modargs : tuple
        args to pass to model.  See notes.
    fitargs : tuple
        args to pass to fit.  See notes.
    lagstart : int
        The first zero-indexed column to hold a lag.  See Notes.
    maxlag : int
        The highest lag order for lag length selection.
    method : str {"aic","bic","t-stat"}
        aic - Akaike Information Criterion
        bic - Bayes Information Criterion
        t-stat - Based on last lag

    Returns
    -------
    icbest : float
        Best information criteria.
    bestlag : int
        The lag length that maximizes the information criterion.


    Notes
    -----
    Does estimation like mod(endog, exog[:,:i], *modargs).fit(*fitargs)
    where i goes from lagstart to lagstart+maxlag+1.  Therefore, lags are
    assumed to be in contiguous columns from low to high lag length with
    the highest lag in the last column.
    """
    #TODO: can tcol be replaced by maxlag + 2?
    #TODO: This could be changed to laggedRHS and exog keyword arguments if
    #    this will be more general.

    results = {}
    method = method.lower()
    for lag in range(startlag, startlag + maxlag + 1):
        mod_instance = mod(endog, exog[:, :lag], *modargs)
        results[lag] = mod_instance.fit()

    if method == "aic":
        icbest, bestlag = min((v.aic, k) for k, v in iteritems(results))
    elif method == "bic":
        icbest, bestlag = min((v.bic, k) for k, v in iteritems(results))
    elif method == "t-stat":
        #stop = stats.norm.ppf(.95)
        stop = 1.6448536269514722
        for lag in range(startlag + maxlag, startlag - 1, -1):
            icbest = np.abs(results[lag].tvalues[-1])
            if np.abs(icbest) >= stop:
                bestlag = lag
                icbest = icbest
                break
    else:
        raise ValueError("Information Criterion %s not understood.") % method

    if not regresults:
        return icbest, bestlag
    else:
        return icbest, bestlag, results


#this needs to be converted to a class like HetGoldfeldQuandt,
# 3 different returns are a mess
# See:
#Ng and Perron(2001), Lag length selection and the construction of unit root
#tests with good size and power, Econometrica, Vol 69 (6) pp 1519-1554
#TODO: include drift keyword, only valid with regression == "c"
# just changes the distribution of the test statistic to a t distribution
#TODO: autolag is untested
[docs]def adfuller(x, maxlag=None, regression="c", autolag='AIC', store=False, regresults=False): ''' Augmented Dickey-Fuller unit root test The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d data series maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4} regression : str {'c','ct','ctt','nc'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend * 'ctt' : constant, and linear and quadratic trend * 'nc' : no constant, no trend autolag : {'AIC', 'BIC', 't-stat', None} * if None, then maxlag lags are used * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterium * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant at the 95 % level. store : bool If True, then a result instance is returned additionally to the adf statistic (default is False) regresults : bool If True, the full regression results are returned (default is False) Returns ------- adf : float Test statistic pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994) usedlag : int Number of lags used. nobs : int Number of observations used for the ADF regression and calculation of the critical values. critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010) icbest : float The maximized information criterion if autolag is not None. regresults : RegressionResults instance The resstore : (optional) instance of ResultStore an instance of a dummy class with results attached as attributes Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to accept or reject the null. The autolag option and maxlag for it are described in Greene. Examples -------- see example script References ---------- Greene Hamilton P-Values (regression surface approximation) MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. Critical values MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html ''' if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if regression is None or isinstance(regression, int): regression = trenddict[regression] regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression x = np.asarray(x) nobs = x.shape[0] if maxlag is None: #from Greene referencing Schwert 1989 maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: resstore = ResultsStore() if autolag: if regression != 'nc': fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # pylint: disable=E1103 #search for lag length with smallest information criteria #Note: use the same number of observations to have comparable IC #aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag # convert to lag not column index #rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != 'nc': resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = {"1%" : critvalues[0], "5%" : critvalues[1], "10%" : critvalues[2]} if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = ("The coefficient on the lagged level equals 1 - " "unit root") resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest
[docs]def acovf(x, unbiased=False, demean=True, fft=False): ''' Autocovariance for 1D Parameters ---------- x : array Time series data. Must be 1d. unbiased : bool If True, then denominators is n-k, otherwise n demean : bool If True, then subtract the mean x from each element of x fft : bool If True, use FFT convolution. This method should be preferred for long time series. Returns ------- acovf : array autocovariance function ''' x = np.squeeze(np.asarray(x)) if x.ndim > 1: raise ValueError("x must be 1d. Got %d dims." % x.ndim) n = len(x) if demean: xo = x - x.mean() else: xo = x if unbiased: xi = np.arange(1, n + 1) d = np.hstack((xi, xi[:-1][::-1])) else: d = n * np.ones(2 * n - 1) if fft: nobs = len(xo) Frf = np.fft.fft(xo, n=nobs * 2) acov = np.fft.ifft(Frf * np.conjugate(Frf))[:nobs] / d[n - 1:] return acov.real else: return (np.correlate(xo, xo, 'full') / d)[n - 1:]
[docs]def q_stat(x, nobs, type="ljungbox"): """ Return's Ljung-Box Q Statistic x : array-like Array of autocorrelation coefficients. Can be obtained from acf. nobs : int Number of observations in the entire sample (ie., not just the length of the autocorrelation function results. Returns ------- q-stat : array Ljung-Box Q-statistic for autocorrelation parameters p-value : array P-value of the Q statistic Notes ------ Written to be used with acf. """ x = np.asarray(x) if type == "ljungbox": ret = (nobs * (nobs + 2) * np.cumsum((1. / (nobs - np.arange(1, len(x) + 1))) * x**2)) chi2 = stats.chi2.sf(ret, np.arange(1, len(x) + 1)) return ret, chi2 #NOTE: Changed unbiased to False #see for example # http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
[docs]def acf(x, unbiased=False, nlags=40, qstat=False, fft=False, alpha=None): ''' Autocorrelation function for 1d arrays. Parameters ---------- x : array Time series data unbiased : bool If True, then denominators for autocovariance are n-k, otherwise n nlags: int, optional Number of lags to return autocorrelation for. qstat : bool, optional If True, returns the Ljung-Box q statistic for each autocorrelation coefficient. See q_stat for more information. fft : bool, optional If True, computes the ACF via FFT. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett\'s formula. Returns ------- acf : array autocorrelation function confint : array, optional Confidence intervals for the ACF. Returned if confint is not None. qstat : array, optional The Ljung-Box Q-Statistic. Returned if q_stat is True. pvalues : array, optional The p-values associated with the Q-statistics. Returned if q_stat is True. Notes ----- The acf at lag 0 (ie., 1) is returned. This is based np.correlate which does full convolution. For very long time series it is recommended to use fft convolution instead. If unbiased is true, the denominator for the autocovariance is adjusted but the autocorrelation is not an unbiased estimtor. ''' nobs = len(x) d = nobs # changes if unbiased if not fft: avf = acovf(x, unbiased=unbiased, demean=True) #acf = np.take(avf/avf[0], range(1,nlags+1)) acf = avf[:nlags + 1] / avf[0] else: x = np.squeeze(np.asarray(x)) #JP: move to acovf x0 = x - x.mean() # ensure that we always use a power of 2 or 3 for zero-padding, # this way we'll ensure O(n log n) runtime of the fft. n = _next_regular(2 * nobs + 1) Frf = np.fft.fft(x0, n=n) # zero-pad for separability if unbiased: d = nobs - np.arange(nobs) acf = np.fft.ifft(Frf * np.conjugate(Frf))[:nobs] / d acf /= acf[0] #acf = np.take(np.real(acf), range(1,nlags+1)) acf = np.real(acf[:nlags + 1]) # keep lag 0 if not (qstat or alpha): return acf if alpha is not None: varacf = np.ones(nlags + 1) / nobs varacf[0] = 0 varacf[1] = 1. / nobs varacf[2:] *= 1 + 2 * np.cumsum(acf[1:-1]**2) interval = stats.norm.ppf(1 - alpha / 2.) * np.sqrt(varacf) confint = np.array(lzip(acf - interval, acf + interval)) if not qstat: return acf, confint if qstat: qstat, pvalue = q_stat(acf[1:], nobs=nobs) # drop lag 0 if alpha is not None: return acf, confint, qstat, pvalue else: return acf, qstat, pvalue
[docs]def pacf_yw(x, nlags=40, method='unbiased'): '''Partial autocorrelation estimated with non-recursive yule_walker Parameters ---------- x : 1d array observations of time series for which pacf is calculated nlags : int largest lag for which pacf is returned method : 'unbiased' (default) or 'mle' method for the autocovariance calculations in yule walker Returns ------- pacf : 1d array partial autocorrelations, maxlag+1 elements Notes ----- This solves yule_walker for each desired lag and contains currently duplicate calculations. ''' pacf = [1.] for k in range(1, nlags + 1): pacf.append(yule_walker(x, k, method=method)[0][-1]) return np.array(pacf) #NOTE: this is incorrect.
[docs]def pacf_ols(x, nlags=40): '''Calculate partial autocorrelations Parameters ---------- x : 1d array observations of time series for which pacf is calculated nlags : int Number of lags for which pacf is returned. Lag 0 is not returned. Returns ------- pacf : 1d array partial autocorrelations, maxlag+1 elements Notes ----- This solves a separate OLS estimation for each desired lag. ''' #TODO: add warnings for Yule-Walker #NOTE: demeaning and not using a constant gave incorrect answers? #JP: demeaning should have a better estimate of the constant #maybe we can compare small sample properties with a MonteCarlo xlags, x0 = lagmat(x, nlags, original='sep') #xlags = sm.add_constant(lagmat(x, nlags), prepend=True) xlags = add_constant(xlags) pacf = [1.] for k in range(1, nlags+1): res = OLS(x0[k:], xlags[k:, :k+1]).fit() #np.take(xlags[k:], range(1,k+1)+[-1], pacf.append(res.params[-1]) return np.array(pacf)
[docs]def pacf(x, nlags=40, method='ywunbiased', alpha=None): '''Partial autocorrelation estimated Parameters ---------- x : 1d array observations of time series for which pacf is calculated nlags : int largest lag for which pacf is returned method : 'ywunbiased' (default) or 'ywmle' or 'ols' specifies which method for the calculations to use: - yw or ywunbiased : yule walker with bias correction in denominator for acovf - ywm or ywmle : yule walker without bias correction - ols - regression of time series on lags of it and on constant - ld or ldunbiased : Levinson-Durbin recursion with bias correction - ldb or ldbiased : Levinson-Durbin recursion without bias correction alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)) Returns ------- pacf : 1d array partial autocorrelations, nlags elements, including lag zero confint : array, optional Confidence intervals for the PACF. Returned if confint is not None. Notes ----- This solves yule_walker equations or ols for each desired lag and contains currently duplicate calculations. ''' if method == 'ols': ret = pacf_ols(x, nlags=nlags) elif method in ['yw', 'ywu', 'ywunbiased', 'yw_unbiased']: ret = pacf_yw(x, nlags=nlags, method='unbiased') elif method in ['ywm', 'ywmle', 'yw_mle']: ret = pacf_yw(x, nlags=nlags, method='mle') elif method in ['ld', 'ldu', 'ldunbiase', 'ld_unbiased']: acv = acovf(x, unbiased=True) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) #print 'ld', ld_ ret = ld_[2] # inconsistent naming with ywmle elif method in ['ldb', 'ldbiased', 'ld_biased']: acv = acovf(x, unbiased=False) ld_ = levinson_durbin(acv, nlags=nlags, isacov=True) ret = ld_[2] else: raise ValueError('method not available') if alpha is not None: varacf = 1. / len(x) # for all lags >=1 interval = stats.norm.ppf(1. - alpha / 2.) * np.sqrt(varacf) confint = np.array(lzip(ret - interval, ret + interval)) confint[0] = ret[0] # fix confidence interval for lag 0 to varpacf=0 return ret, confint else: return ret
[docs]def ccovf(x, y, unbiased=True, demean=True): ''' crosscovariance for 1D Parameters ---------- x, y : arrays time series data unbiased : boolean if True, then denominators is n-k, otherwise n Returns ------- ccovf : array autocovariance function Notes ----- This uses np.correlate which does full convolution. For very long time series it is recommended to use fft convolution instead. ''' n = len(x) if demean: xo = x - x.mean() yo = y - y.mean() else: xo = x yo = y if unbiased: xi = np.ones(n) d = np.correlate(xi, xi, 'full') else: d = n return (np.correlate(xo, yo, 'full') / d)[n - 1:]
[docs]def ccf(x, y, unbiased=True): '''cross-correlation function for 1d Parameters ---------- x, y : arrays time series data unbiased : boolean if True, then denominators for autocovariance is n-k, otherwise n Returns ------- ccf : array cross-correlation function of x and y Notes ----- This is based np.correlate which does full convolution. For very long time series it is recommended to use fft convolution instead. If unbiased is true, the denominator for the autocovariance is adjusted but the autocorrelation is not an unbiased estimtor. ''' cvf = ccovf(x, y, unbiased=unbiased, demean=True) return cvf / (np.std(x) * np.std(y))
[docs]def periodogram(X): """ Returns the periodogram for the natural frequency of X Parameters ---------- X : array-like Array for which the periodogram is desired. Returns ------- pgram : array 1./len(X) * np.abs(np.fft.fft(X))**2 References ---------- Brockwell and Davis. """ X = np.asarray(X) #if kernel == "bartlett": # w = 1 - np.arange(M+1.)/M #JP removed integer division pergr = 1. / len(X) * np.abs(np.fft.fft(X))**2 pergr[0] = 0. # what are the implications of this? return pergr #copied from nitime and statsmodels\sandbox\tsa\examples\try_ld_nitime.py #TODO: check what to return, for testing and trying out returns everything
[docs]def levinson_durbin(s, nlags=10, isacov=False): '''Levinson-Durbin recursion for autoregressive processes Parameters ---------- s : array_like If isacov is False, then this is the time series. If iasacov is true then this is interpreted as autocovariance starting with lag 0 nlags : integer largest lag to include in recursion or order of the autoregressive process isacov : boolean flag to indicate whether the first argument, s, contains the autocovariances or the data series. Returns ------- sigma_v : float estimate of the error variance ? arcoefs : ndarray estimate of the autoregressive coefficients pacf : ndarray partial autocorrelation function sigma : ndarray entire sigma array from intermediate result, last value is sigma_v phi : ndarray entire phi array from intermediate result, last column contains autoregressive coefficients for AR(nlags) with a leading 1 Notes ----- This function returns currently all results, but maybe we drop sigma and phi from the returns. If this function is called with the time series (isacov=False), then the sample autocovariance function is calculated with the default options (biased, no fft). ''' s = np.asarray(s) order = nlags # rename compared to nitime #from nitime ##if sxx is not None and type(sxx) == np.ndarray: ## sxx_m = sxx[:order+1] ##else: ## sxx_m = ut.autocov(s)[:order+1] if isacov: sxx_m = s else: sxx_m = acovf(s)[:order + 1] # not tested phi = np.zeros((order + 1, order + 1), 'd') sig = np.zeros(order + 1) # initial points for the recursion phi[1, 1] = sxx_m[1] / sxx_m[0] sig[1] = sxx_m[0] - phi[1, 1] * sxx_m[1] for k in range(2, order + 1): phi[k, k] = (sxx_m[k] - np.dot(phi[1:k, k-1], sxx_m[1:k][::-1])) / sig[k-1] for j in range(1, k): phi[j, k] = phi[j, k-1] - phi[k, k] * phi[k-j, k-1] sig[k] = sig[k-1] * (1 - phi[k, k]**2) sigma_v = sig[-1] arcoefs = phi[1:, -1] pacf_ = np.diag(phi).copy() pacf_[0] = 1. return sigma_v, arcoefs, pacf_, sig, phi # return everything
[docs]def grangercausalitytests(x, maxlag, addconst=True, verbose=True): """four tests for granger non causality of 2 timeseries all four tests give similar results `params_ftest` and `ssr_ftest` are equivalent based on F test which is identical to lmtest:grangertest in R Parameters ---------- x : array, 2d, (nobs,2) data for test whether the time series in the second column Granger causes the time series in the first column maxlag : integer the Granger causality test results are calculated for all lags up to maxlag verbose : bool print results if true Returns ------- results : dictionary all test results, dictionary keys are the number of lags. For each lag the values are a tuple, with the first element a dictionary with teststatistic, pvalues, degrees of freedom, the second element are the OLS estimation results for the restricted model, the unrestricted model and the restriction (contrast) matrix for the parameter f_test. Notes ----- TODO: convert to class and attach results properly The Null hypothesis for grangercausalitytests is that the time series in the second column, x2, does NOT Granger cause the time series in the first column, x1. Grange causality means that past values of x2 have a statistically significant effect on the current value of x1, taking past values of x1 into account as regressors. We reject the null hypothesis that x2 does not Granger cause x1 if the pvalues are below a desired size of the test. The null hypothesis for all four test is that the coefficients corresponding to past values of the second time series are zero. 'params_ftest', 'ssr_ftest' are based on F distribution 'ssr_chi2test', 'lrtest' are based on chi-square distribution References ---------- http://en.wikipedia.org/wiki/Granger_causality Greene: Econometric Analysis """ from scipy import stats x = np.asarray(x) if x.shape[0] <= 3 * maxlag + int(addconst): raise ValueError("Insufficient observations. Maximum allowable " "lag is {0}".format(int((x.shape[0] - int(addconst)) / 3) - 1)) resli = {} for mlg in range(1, maxlag + 1): result = {} if verbose: print('\nGranger Causality') print('number of lags (no zero)', mlg) mxlg = mlg # create lagmat of both time series dta = lagmat2ds(x, mxlg, trim='both', dropex=1) #add constant if addconst: dtaown = add_constant(dta[:, 1:(mxlg + 1)], prepend=False) dtajoint = add_constant(dta[:, 1:], prepend=False) else: raise NotImplementedError('Not Implemented') #dtaown = dta[:, 1:mxlg] #dtajoint = dta[:, 1:] # Run ols on both models without and with lags of second variable res2down = OLS(dta[:, 0], dtaown).fit() res2djoint = OLS(dta[:, 0], dtajoint).fit() #print results #for ssr based tests see: #http://support.sas.com/rnd/app/examples/ets/granger/index.htm #the other tests are made-up # Granger Causality test using ssr (F statistic) fgc1 = ((res2down.ssr - res2djoint.ssr) / res2djoint.ssr / mxlg * res2djoint.df_resid) if verbose: print('ssr based F test: F=%-8.4f, p=%-8.4f, df_denom=%d,' ' df_num=%d' % (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg)) result['ssr_ftest'] = (fgc1, stats.f.sf(fgc1, mxlg, res2djoint.df_resid), res2djoint.df_resid, mxlg) # Granger Causality test using ssr (ch2 statistic) fgc2 = res2down.nobs * (res2down.ssr - res2djoint.ssr) / res2djoint.ssr if verbose: print('ssr based chi2 test: chi2=%-8.4f, p=%-8.4f, ' 'df=%d' % (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg)) result['ssr_chi2test'] = (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg) #likelihood ratio test pvalue: lr = -2 * (res2down.llf - res2djoint.llf) if verbose: print('likelihood ratio test: chi2=%-8.4f, p=%-8.4f, df=%d' % (lr, stats.chi2.sf(lr, mxlg), mxlg)) result['lrtest'] = (lr, stats.chi2.sf(lr, mxlg), mxlg) # F test that all lag coefficients of exog are zero rconstr = np.column_stack((np.zeros((mxlg, mxlg)), np.eye(mxlg, mxlg), np.zeros((mxlg, 1)))) ftres = res2djoint.f_test(rconstr) if verbose: print('parameter F test: F=%-8.4f, p=%-8.4f, df_denom=%d,' ' df_num=%d' % (ftres.fvalue, ftres.pvalue, ftres.df_denom, ftres.df_num)) result['params_ftest'] = (np.squeeze(ftres.fvalue)[()], np.squeeze(ftres.pvalue)[()], ftres.df_denom, ftres.df_num) resli[mxlg] = (result, [res2down, res2djoint, rconstr]) return resli
def coint(y1, y2, regression="c"): """ This is a simple cointegration test. Uses unit-root test on residuals to test for cointegrated relationship See Hamilton (1994) 19.2 Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector c : str {'c'} Included in regression * 'c' : Constant Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values are obtained through regression surface approximation from MacKinnon 1994. References ---------- MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. """ regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression y1 = np.asarray(y1) y2 = np.asarray(y2) if regression == 'c': y2 = add_constant(y2, prepend=False) st1_resid = OLS(y1, y2).fit().resid # stage one residuals lgresid_cons = add_constant(st1_resid[0:-1], prepend=False) uroot_reg = OLS(st1_resid[1:], lgresid_cons).fit() coint_t = (uroot_reg.params[0] - 1) / uroot_reg.bse[0] pvalue = mackinnonp(coint_t, regression="c", N=2, lags=None) crit_value = mackinnoncrit(N=1, regression="c", nobs=len(y1)) return coint_t, pvalue, crit_value def _safe_arma_fit(y, order, model_kw, trend, fit_kw, start_params=None): try: return ARMA(y, order=order, **model_kw).fit(disp=0, trend=trend, start_params=start_params, **fit_kw) except LinAlgError: # SVD convergence failure on badly misspecified models return except ValueError as error: if start_params is not None: # don't recurse again # user supplied start_params only get one chance return # try a little harder, should be handled in fit really elif ((hasattr(error, 'message') and 'initial' not in error.message) or 'initial' in str(error)): # py2 and py3 start_params = [.1] * sum(order) if trend == 'c': start_params = [.1] + start_params return _safe_arma_fit(y, order, model_kw, trend, fit_kw, start_params) else: return except: # no idea what happened return
[docs]def arma_order_select_ic(y, max_ar=4, max_ma=2, ic='bic', trend='c', model_kw={}, fit_kw={}): """ Returns information criteria for many ARMA models Parameters ---------- y : array-like Time-series data max_ar : int Maximum number of AR lags to use. Default 4. max_ma : int Maximum number of MA lags to use. Default 2. ic : str, list Information criteria to report. Either a single string or a list of different criteria is possible. trend : str The trend to use when fitting the ARMA models. model_kw : dict Keyword arguments to be passed to the ``ARMA`` model fit_kw : dict Keyword arguments to be passed to ``ARMA.fit``. Returns ------- obj : Results object Each ic is an attribute with a DataFrame for the results. The AR order used is the row index. The ma order used is the column index. The minimum orders are available as ``ic_min_order``. Examples -------- >>> from statsmodels.tsa.arima_process import arma_generate_sample >>> import statsmodels.api as sm >>> import numpy as np >>> arparams = np.array([.75, -.25]) >>> maparams = np.array([.65, .35]) >>> arparams = np.r_[1, -arparams] >>> maparam = np.r_[1, maparams] >>> nobs = 250 >>> np.random.seed(2014) >>> y = arma_generate_sample(arparams, maparams, nobs) >>> res = sm.tsa.arma_order_select_ic(y, ic=['aic', 'bic'], trend='nc') >>> res.aic_min_order >>> res.bic_min_order Notes ----- This method can be used to tentatively identify the order of an ARMA process, provided that the time series is stationary and invertible. This function computes the full exact MLE estimate of each model and can be, therefore a little slow. An implementation using approximate estimates will be provided in the future. In the meantime, consider passing {method : 'css'} to fit_kw. """ from pandas import DataFrame ar_range = lrange(0, max_ar + 1) ma_range = lrange(0, max_ma + 1) if isinstance(ic, string_types): ic = [ic] elif not isinstance(ic, (list, tuple)): raise ValueError("Need a list or a tuple for ic if not a string.") results = np.zeros((len(ic), max_ar + 1, max_ma + 1)) for ar in ar_range: for ma in ma_range: if ar == 0 and ma == 0 and trend == 'nc': results[:, ar, ma] = np.nan continue mod = _safe_arma_fit(y, (ar, ma), model_kw, trend, fit_kw) if mod is None: results[:, ar, ma] = np.nan continue for i, criteria in enumerate(ic): results[i, ar, ma] = getattr(mod, criteria) dfs = [DataFrame(res, columns=ma_range, index=ar_range) for res in results] res = dict(zip(ic, dfs)) # add the minimums to the results dict min_res = {} for i, result in iteritems(res): mins = np.where(result.min().min() == result) min_res.update({i + '_min_order' : (mins[0][0], mins[1][0])}) res.update(min_res) return Bunch(**res)
if __name__ == "__main__": import statsmodels.api as sm data = sm.datasets.macrodata.load().data x = data['realgdp'] # adf is tested now. adf = adfuller(x, 4, autolag=None) adfbic = adfuller(x, autolag="bic") adfaic = adfuller(x, autolag="aic") adftstat = adfuller(x, autolag="t-stat") # acf is tested now acf1, ci1, Q, pvalue = acf(x, nlags=40, confint=95, qstat=True) acf2, ci2, Q2, pvalue2 = acf(x, nlags=40, confint=95, fft=True, qstat=True) acf3, ci3, Q3, pvalue3 = acf(x, nlags=40, confint=95, qstat=True, unbiased=True) acf4, ci4, Q4, pvalue4 = acf(x, nlags=40, confint=95, fft=True, qstat=True, unbiased=True) # pacf is tested now # pacf1 = pacorr(x) # pacfols = pacf_ols(x, nlags=40) # pacfyw = pacf_yw(x, nlags=40, method="mle") y = np.random.normal(size=(100, 2)) grangercausalitytests(y, 2)