from statsmodels.compat.python import range, lrange, lzip
import numpy as np
import numpy.lib.recfunctions as nprf
from statsmodels.tools.tools import add_constant
from pandas.tseries import offsets
from pandas.tseries.frequencies import to_offset
[docs]def add_trend(X, trend="c", prepend=False, has_constant='skip'):
"""
Adds a trend and/or constant to an array.
Parameters
----------
X : array-like
Original array of data.
trend : str {"c","t","ct","ctt"}
"c" add constant only
"t" add trend only
"ct" add constant and linear trend
"ctt" add constant and linear and quadratic trend.
prepend : bool
If True, prepends the new data to the columns of X.
has_constant : str {'raise', 'add', 'skip'}
Controls what happens when trend is 'c' and a constant already
exists in X. 'raise' will raise an error. 'add' will duplicate a
constant. 'skip' will return the data without change. 'skip' is the
default.
Notes
-----
Returns columns as ["ctt","ct","c"] whenever applicable. There is currently
no checking for an existing trend.
See also
--------
statsmodels.add_constant
"""
#TODO: could be generalized for trend of aribitrary order
trend = trend.lower()
if trend == "c": # handles structured arrays
return add_constant(X, prepend=prepend, has_constant=has_constant)
elif trend == "ct" or trend == "t":
trendorder = 1
elif trend == "ctt":
trendorder = 2
else:
raise ValueError("trend %s not understood" % trend)
X = np.asanyarray(X)
nobs = len(X)
trendarr = np.vander(np.arange(1,nobs+1, dtype=float), trendorder+1)
# put in order ctt
trendarr = np.fliplr(trendarr)
if trend == "t":
trendarr = trendarr[:,1]
if not X.dtype.names:
# check for constant
if "c" in trend and np.any(np.ptp(X, axis=0) == 0):
if has_constant == 'raise':
raise ValueError("X already contains a constant")
elif has_constant == 'add':
pass
elif has_constant == 'skip' and trend == "ct":
trendarr = trendarr[:, 1]
if not prepend:
X = np.column_stack((X, trendarr))
else:
X = np.column_stack((trendarr, X))
else:
return_rec = data.__clas__ is np.recarray
if trendorder == 1:
if trend == "ct":
dt = [('const',float),('trend',float)]
else:
dt = [('trend', float)]
elif trendorder == 2:
dt = [('const',float),('trend',float),('trend_squared', float)]
trendarr = trendarr.view(dt)
if prepend:
X = nprf.append_fields(trendarr, X.dtype.names, [X[i] for i
in X.dtype.names], usemask=False, asrecarray=return_rec)
else:
X = nprf.append_fields(X, trendarr.dtype.names, [trendarr[i] for i
in trendarr.dtype.names], usemask=False, asrecarray=return_rec)
return X
def add_lag(x, col=None, lags=1, drop=False, insert=True):
"""
Returns an array with lags included given an array.
Parameters
----------
x : array
An array or NumPy ndarray subclass. Can be either a 1d or 2d array with
observations in columns.
col : 'string', int, or None
If data is a structured array or a recarray, `col` can be a string
that is the name of the column containing the variable. Or `col` can
be an int of the zero-based column index. If it's a 1d array `col`
can be None.
lags : int
The number of lags desired.
drop : bool
Whether to keep the contemporaneous variable for the data.
insert : bool or int
If True, inserts the lagged values after `col`. If False, appends
the data. If int inserts the lags at int.
Returns
-------
array : ndarray
Array with lags
Examples
--------
>>> import statsmodels.api as sm
>>> data = sm.datasets.macrodata.load()
>>> data = data.data[['year','quarter','realgdp','cpi']]
>>> data = sm.tsa.add_lag(data, 'realgdp', lags=2)
Notes
-----
Trims the array both forward and backward, so that the array returned
so that the length of the returned array is len(`X`) - lags. The lags are
returned in increasing order, ie., t-1,t-2,...,t-lags
"""
if x.dtype.names:
names = x.dtype.names
if not col and np.squeeze(x).ndim > 1:
raise IndexError("col is None and the input array is not 1d")
elif len(names) == 1:
col = names[0]
if isinstance(col, int):
col = x.dtype.names[col]
contemp = x[col]
# make names for lags
tmp_names = [col + '_'+'L(%i)' % i for i in range(1,lags+1)]
ndlags = lagmat(contemp, maxlag=lags, trim='Both')
# get index for return
if insert is True:
ins_idx = list(names).index(col) + 1
elif insert is False:
ins_idx = len(names) + 1
else: # insert is an int
if insert > len(names):
import warnings
warnings.warn("insert > number of variables, inserting at the"
" last position",
UserWarning)
ins_idx = insert
first_names = list(names[:ins_idx])
last_names = list(names[ins_idx:])
if drop:
if col in first_names:
first_names.pop(first_names.index(col))
else:
last_names.pop(last_names.index(col))
if first_names: # only do this if x isn't "empty"
first_arr = nprf.append_fields(x[first_names][lags:],tmp_names,
ndlags.T, usemask=False)
else:
first_arr = np.zeros(len(x)-lags, dtype=lzip(tmp_names,
(x[col].dtype,)*lags))
for i,name in enumerate(tmp_names):
first_arr[name] = ndlags[:,i]
if last_names:
return nprf.append_fields(first_arr, last_names,
[x[name][lags:] for name in last_names], usemask=False)
else: # lags for last variable
return first_arr
else: # we have an ndarray
if x.ndim == 1: # make 2d if 1d
x = x[:,None]
if col is None:
col = 0
# handle negative index
if col < 0:
col = x.shape[1] + col
contemp = x[:,col]
if insert is True:
ins_idx = col + 1
elif insert is False:
ins_idx = x.shape[1]
else:
if insert < 0: # handle negative index
insert = x.shape[1] + insert + 1
if insert > x.shape[1]:
insert = x.shape[1]
import warnings
warnings.warn("insert > number of variables, inserting at the"
" last position",
UserWarning)
ins_idx = insert
ndlags = lagmat(contemp, lags, trim='Both')
first_cols = lrange(ins_idx)
last_cols = lrange(ins_idx,x.shape[1])
if drop:
if col in first_cols:
first_cols.pop(first_cols.index(col))
else:
last_cols.pop(last_cols.index(col))
return np.column_stack((x[lags:,first_cols],ndlags,
x[lags:,last_cols]))
[docs]def detrend(x, order=1, axis=0):
'''detrend an array with a trend of given order along axis 0 or 1
Parameters
----------
x : array_like, 1d or 2d
data, if 2d, then each row or column is independently detrended with the
same trendorder, but independent trend estimates
order : int
specifies the polynomial order of the trend, zero is constant, one is
linear trend, two is quadratic trend
axis : int
for detrending with order > 0, axis can be either 0 observations by rows,
or 1, observations by columns
Returns
-------
detrended data series : ndarray
The detrended series is the residual of the linear regression of the
data on the trend of given order.
'''
x = np.asarray(x)
nobs = x.shape[0]
if order == 0:
return x - np.expand_dims(x.mean(ax), x)
else:
if x.ndim == 2 and lrange(2)[axis]==1:
x = x.T
elif x.ndim > 2:
raise NotImplementedError('x.ndim>2 is not implemented until it is needed')
#could use a polynomial, but this should work also with 2d x, but maybe not yet
trends = np.vander(np.arange(nobs).astype(float), N=order+1)
beta = np.linalg.lstsq(trends, x)[0]
resid = x - np.dot(trends, beta)
if x.ndim == 2 and lrange(2)[axis]==1:
resid = resid.T
return resid
[docs]def lagmat(x, maxlag, trim='forward', original='ex'):
'''create 2d array of lags
Parameters
----------
x : array_like, 1d or 2d
data; if 2d, observation in rows and variables in columns
maxlag : int or sequence of ints
all lags from zero to maxlag are included
trim : str {'forward', 'backward', 'both', 'none'} or None
* 'forward' : trim invalid observations in front
* 'backward' : trim invalid initial observations
* 'both' : trim invalid observations on both sides
* 'none', None : no trimming of observations
original : str {'ex','sep','in'}
* 'ex' : drops the original array returning only the lagged values.
* 'in' : returns the original array and the lagged values as a single
array.
* 'sep' : returns a tuple (original array, lagged values). The original
array is truncated to have the same number of rows as
the returned lagmat.
Returns
-------
lagmat : 2d array
array with lagged observations
y : 2d array, optional
Only returned if original == 'sep'
Examples
--------
>>> from statsmodels.tsa.tsatools import lagmat
>>> import numpy as np
>>> X = np.arange(1,7).reshape(-1,2)
>>> lagmat(X, maxlag=2, trim="forward", original='in')
array([[ 1., 2., 0., 0., 0., 0.],
[ 3., 4., 1., 2., 0., 0.],
[ 5., 6., 3., 4., 1., 2.]])
>>> lagmat(X, maxlag=2, trim="backward", original='in')
array([[ 5., 6., 3., 4., 1., 2.],
[ 0., 0., 5., 6., 3., 4.],
[ 0., 0., 0., 0., 5., 6.]])
>>> lagmat(X, maxlag=2, trim="both", original='in')
array([[ 5., 6., 3., 4., 1., 2.]])
>>> lagmat(X, maxlag=2, trim="none", original='in')
array([[ 1., 2., 0., 0., 0., 0.],
[ 3., 4., 1., 2., 0., 0.],
[ 5., 6., 3., 4., 1., 2.],
[ 0., 0., 5., 6., 3., 4.],
[ 0., 0., 0., 0., 5., 6.]])
Notes
-----
TODO:
* allow list of lags additional to maxlag
* create varnames for columns
'''
x = np.asarray(x)
dropidx = 0
if x.ndim == 1:
x = x[:,None]
nobs, nvar = x.shape
if original in ['ex','sep']:
dropidx = nvar
if maxlag >= nobs:
raise ValueError("maxlag should be < nobs")
lm = np.zeros((nobs+maxlag, nvar*(maxlag+1)))
for k in range(0, int(maxlag+1)):
lm[maxlag-k:nobs+maxlag-k, nvar*(maxlag-k):nvar*(maxlag-k+1)] = x
if trim:
trimlower = trim.lower()
else:
trimlower = trim
if trimlower == 'none' or not trimlower:
startobs = 0
stopobs = len(lm)
elif trimlower == 'forward':
startobs = 0
stopobs = nobs+maxlag-k
elif trimlower == 'both':
startobs = maxlag
stopobs = nobs+maxlag-k
elif trimlower == 'backward':
startobs = maxlag
stopobs = len(lm)
else:
raise ValueError('trim option not valid')
if original == 'sep':
return lm[startobs:stopobs,dropidx:], x[startobs:stopobs]
else:
return lm[startobs:stopobs,dropidx:]
[docs]def lagmat2ds(x, maxlag0, maxlagex=None, dropex=0, trim='forward'):
'''generate lagmatrix for 2d array, columns arranged by variables
Parameters
----------
x : array_like, 2d
2d data, observation in rows and variables in columns
maxlag0 : int
for first variable all lags from zero to maxlag are included
maxlagex : None or int
max lag for all other variables all lags from zero to maxlag are included
dropex : int (default is 0)
exclude first dropex lags from other variables
for all variables, except the first, lags from dropex to maxlagex are
included
trim : string
* 'forward' : trim invalid observations in front
* 'backward' : trim invalid initial observations
* 'both' : trim invalid observations on both sides
* 'none' : no trimming of observations
Returns
-------
lagmat : 2d array
array with lagged observations, columns ordered by variable
Notes
-----
very inefficient for unequal lags, just done for convenience
'''
if maxlagex is None:
maxlagex = maxlag0
maxlag = max(maxlag0, maxlagex)
nobs, nvar = x.shape
lagsli = [lagmat(x[:,0], maxlag, trim=trim, original='in')[:,:maxlag0+1]]
for k in range(1,nvar):
lagsli.append(lagmat(x[:,k], maxlag, trim=trim, original='in')[:,dropex:maxlagex+1])
return np.column_stack(lagsli)
def vec(mat):
return mat.ravel('F')
def vech(mat):
# Gets Fortran-order
return mat.T.take(_triu_indices(len(mat)))
# tril/triu/diag, suitable for ndarray.take
def _tril_indices(n):
rows, cols = np.tril_indices(n)
return rows * n + cols
def _triu_indices(n):
rows, cols = np.triu_indices(n)
return rows * n + cols
def _diag_indices(n):
rows, cols = np.diag_indices(n)
return rows * n + cols
def unvec(v):
k = int(np.sqrt(len(v)))
assert(k * k == len(v))
return v.reshape((k, k), order='F')
def unvech(v):
# quadratic formula, correct fp error
rows = .5 * (-1 + np.sqrt(1 + 8 * len(v)))
rows = int(np.round(rows))
result = np.zeros((rows, rows))
result[np.triu_indices(rows)] = v
result = result + result.T
# divide diagonal elements by 2
result[np.diag_indices(rows)] /= 2
return result
def duplication_matrix(n):
"""
Create duplication matrix D_n which satisfies vec(S) = D_n vech(S) for
symmetric matrix S
Returns
-------
D_n : ndarray
"""
tmp = np.eye(n * (n + 1) / 2)
return np.array([unvech(x).ravel() for x in tmp]).T
def elimination_matrix(n):
"""
Create the elimination matrix L_n which satisfies vech(M) = L_n vec(M) for
any matrix M
Parameters
----------
Returns
-------
"""
vech_indices = vec(np.tril(np.ones((n, n))))
return np.eye(n * n)[vech_indices != 0]
def commutation_matrix(p, q):
"""
Create the commutation matrix K_{p,q} satisfying vec(A') = K_{p,q} vec(A)
Parameters
----------
p : int
q : int
Returns
-------
K : ndarray (pq x pq)
"""
K = np.eye(p * q)
indices = np.arange(p * q).reshape((p, q), order='F')
return K.take(indices.ravel(), axis=0)
def _ar_transparams(params):
"""
Transforms params to induce stationarity/invertability.
Parameters
----------
params : array
The AR coefficients
Reference
---------
Jones(1980)
"""
newparams = ((1-np.exp(-params))/
(1+np.exp(-params))).copy()
tmp = ((1-np.exp(-params))/
(1+np.exp(-params))).copy()
for j in range(1,len(params)):
a = newparams[j]
for kiter in range(j):
tmp[kiter] -= a * newparams[j-kiter-1]
newparams[:j] = tmp[:j]
return newparams
def _ar_invtransparams(params):
"""
Inverse of the Jones reparameterization
Parameters
----------
params : array
The transformed AR coefficients
"""
# AR coeffs
tmp = params.copy()
for j in range(len(params)-1,0,-1):
a = params[j]
for kiter in range(j):
tmp[kiter] = (params[kiter] + a * params[j-kiter-1])/\
(1-a**2)
params[:j] = tmp[:j]
invarcoefs = -np.log((1-params)/(1+params))
return invarcoefs
def _ma_transparams(params):
"""
Transforms params to induce stationarity/invertability.
Parameters
----------
params : array
The ma coeffecients of an (AR)MA model.
Reference
---------
Jones(1980)
"""
newparams = ((1-np.exp(-params))/(1+np.exp(-params))).copy()
tmp = ((1-np.exp(-params))/(1+np.exp(-params))).copy()
# levinson-durbin to get macf
for j in range(1,len(params)):
b = newparams[j]
for kiter in range(j):
tmp[kiter] += b * newparams[j-kiter-1]
newparams[:j] = tmp[:j]
return newparams
def _ma_invtransparams(macoefs):
"""
Inverse of the Jones reparameterization
Parameters
----------
params : array
The transformed MA coefficients
"""
tmp = macoefs.copy()
for j in range(len(macoefs)-1,0,-1):
b = macoefs[j]
for kiter in range(j):
tmp[kiter] = (macoefs[kiter]-b *macoefs[j-kiter-1])/(1-b**2)
macoefs[:j] = tmp[:j]
invmacoefs = -np.log((1-macoefs)/(1+macoefs))
return invmacoefs
def unintegrate_levels(x, d):
"""
Returns the successive differences needed to unintegrate the series.
Parameters
----------
x : array-like
The original series
d : int
The number of differences of the differenced series.
Returns
-------
y : array-like
The increasing differences from 0 to d-1 of the first d elements
of x.
See Also
--------
unintegrate
"""
x = x[:d]
return np.asarray([np.diff(x, d - i)[0] for i in range(d, 0, -1)])
def unintegrate(x, levels):
"""
After taking n-differences of a series, return the original series
Parameters
----------
x : array-like
The n-th differenced series
levels : list
A list of the first-value in each differenced series, for
[first-difference, second-difference, ..., n-th difference]
Returns
-------
y : array-like
The original series de-differenced
Examples
--------
>>> x = np.array([1, 3, 9., 19, 8.])
>>> levels = unintegrate_levels(x, 2)
>>> levels
array([ 1., 2.])
>>> unintegrate(np.diff(x, 2), levels)
array([ 1., 3., 9., 19., 8.])
"""
levels = list(levels)[:] # copy
if len(levels) > 1:
x0 = levels.pop(-1)
return unintegrate(np.cumsum(np.r_[x0, x]), levels)
x0 = levels[0]
return np.cumsum(np.r_[x0, x])
def freq_to_period(freq):
"""
Convert a pandas frequency to a periodicity
Parameters
----------
freq : str or offset
Frequency to convert
Returns
-------
period : int
Periodicity of freq
Notes
-----
Annual maps to 1, quarterly maps to 4, monthly to 12, weekly to 52.
"""
if not isinstance(freq, offsets.DateOffset):
freq = to_offset(freq) # go ahead and standardize
freq = freq.rule_code.upper()
if freq == 'A' or freq.startswith(('A-', 'AS-')):
return 1
elif freq == 'Q' or freq.startswith(('Q-', 'QS-')):
return 4
elif freq == 'M' or freq.startswith(('M-', 'MS')):
return 12
elif freq == 'B' or freq == 'W' or freq.startswith('W-'):
return 52
else: # pragma : no cover
raise ValueError("freq {} not understood. Please report if you "
"think this in error.".format(freq))
__all__ = ['lagmat', 'lagmat2ds','add_trend', 'duplication_matrix',
'elimination_matrix', 'commutation_matrix',
'vec', 'vech', 'unvec', 'unvech']
if __name__ == '__main__':
# sanity check, mainly for imports
x = np.random.normal(size=(100,2))
tmp = lagmat(x,2)
tmp = lagmat2ds(x,2)
# grangercausalitytests(x, 2)