Kernel Density EstimationΒΆ
In [ ]:
import numpy as np
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.distributions.mixture_rvs import mixture_rvs
A univariate example.¶
In [ ]:
np.random.seed(12345)
In [ ]:
obs_dist1 = mixture_rvs([.25,.75], size=10000, dist=[stats.norm, stats.norm],
kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.5)))
In [ ]:
kde = sm.nonparametric.KDEUnivariate(obs_dist1)
kde.fit()
In [ ]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.hist(obs_dist1, bins=50, normed=True, color='red')
ax.plot(kde.support, kde.density, lw=2, color='black');
In [ ]:
obs_dist2 = mixture_rvs([.25,.75], size=10000, dist=[stats.norm, stats.beta],
kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=1,args=(1,.5))))
kde2 = sm.nonparametric.KDEUnivariate(obs_dist2)
kde2.fit()
In [ ]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.hist(obs_dist2, bins=50, normed=True, color='red')
ax.plot(kde2.support, kde2.density, lw=2, color='black');
The fitted KDE object is a full non-parametric distribution.
In [ ]:
obs_dist3 = mixture_rvs([.25,.75], size=1000, dist=[stats.norm, stats.norm],
kwargs = (dict(loc=-1,scale=.5),dict(loc=1,scale=.5)))
kde3 = sm.nonparametric.KDEUnivariate(obs_dist3)
kde3.fit()
In [ ]:
kde3.entropy
In [ ]:
kde3.evaluate(-1)
CDF¶
In [ ]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(kde3.support, kde3.cdf);
Cumulative Hazard Function¶
In [ ]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(kde3.support, kde3.cumhazard);
Inverse CDF¶
In [ ]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(kde3.support, kde3.icdf);
Survival Function¶
In [ ]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(kde3.support, kde3.sf);