statsmodels.nonparametric.kernel_density.KDEMultivariate¶
-
class
statsmodels.nonparametric.kernel_density.
KDEMultivariate
(data, var_type, bw=None, defaults=<statsmodels.nonparametric._kernel_base.EstimatorSettings object>)[source]¶ Multivariate kernel density estimator.
This density estimator can handle univariate as well as multivariate data, including mixed continuous / ordered discrete / unordered discrete data. It also provides cross-validated bandwidth selection methods (least squares, maximum likelihood).
Parameters: data: list of ndarrays or 2-D ndarray
The training data for the Kernel Density Estimation, used to determine the bandwidth(s). If a 2-D array, should be of shape (num_observations, num_variables). If a list, each list element is a separate observation.
var_type: str
The type of the variables:
- c : continuous
- u : unordered (discrete)
- o : ordered (discrete)
The string should contain a type specifier for each variable, so for example
var_type='ccuo'
.bw: array_like or str, optional
If an array, it is a fixed user-specified bandwidth. If a string, should be one of:
- normal_reference: normal reference rule of thumb (default)
- cv_ml: cross validation maximum likelihood
- cv_ls: cross validation least squares
defaults: EstimatorSettings instance, optional
The default values for (efficient) bandwidth estimation.
See also
Examples
>>> import statsmodels.api as sm >>> nobs = 300 >>> np.random.seed(1234) # Seed random generator >>> c1 = np.random.normal(size=(nobs,1)) >>> c2 = np.random.normal(2, 1, size=(nobs,1))
Estimate a bivariate distribution and display the bandwidth found:
>>> dens_u = sm.nonparametric.KDEMultivariate(data=[c1,c2], ... var_type='cc', bw='normal_reference') >>> dens_u.bw array([ 0.39967419, 0.38423292])
Attributes
bw: array_like The bandwidth parameters. Methods
cdf
([data_predict])Evaluate the cumulative distribution function. imse
(bw)Returns the Integrated Mean Square Error for the unconditional KDE. loo_likelihood
(bw[, func])Returns the leave-one-out likelihood function. pdf
([data_predict])Evaluate the probability density function.