Source code for statsmodels.regression.linear_model

# TODO: Determine which tests are valid for GLSAR, and under what conditions
# TODO: Fix issue with constant and GLS
# TODO: GLS: add options Iterative GLS, for iterative fgls if sigma is None
# TODO: GLS: default if sigma is none should be two-step GLS
# TODO: Check nesting when performing model based tests, lr, wald, lm
"""
This module implements standard regression models:

Generalized Least Squares (GLS)
Ordinary Least Squares (OLS)
Weighted Least Squares (WLS)
Generalized Least Squares with autoregressive error terms GLSAR(p)

Models are specified with an endogenous response variable and an
exogenous design matrix and are fit using their `fit` method.

Subclasses that have more complicated covariance matrices
should write over the 'whiten' method as the fit method
prewhitens the response by calling 'whiten'.

General reference for regression models:

D. C. Montgomery and E.A. Peck. "Introduction to Linear Regression
    Analysis." 2nd. Ed., Wiley, 1992.

Econometrics references for regression models:

R. Davidson and J.G. MacKinnon.  "Econometric Theory and Methods," Oxford,
    2004.

W. Green.  "Econometric Analysis," 5th ed., Pearson, 2003.
"""

from __future__ import print_function

from statsmodels.compat.python import lrange, lzip, range
__docformat__ = 'restructuredtext en'

__all__ = ['GLS', 'WLS', 'OLS', 'GLSAR']

import numpy as np
import pandas as pd
from scipy.linalg import toeplitz
from scipy import stats
from scipy import optimize

from statsmodels.compat.numpy import np_matrix_rank
from statsmodels.tools.data import _is_using_pandas
from statsmodels.tools.tools import add_constant, chain_dot, pinv_extended
from statsmodels.tools.decorators import (resettable_cache,
                                          cache_readonly,
                                          cache_writable)
import statsmodels.base.model as base
import statsmodels.base.wrapper as wrap
from statsmodels.emplike.elregress import _ELRegOpts
import warnings
from statsmodels.tools.sm_exceptions import InvalidTestWarning

# need import in module instead of lazily to copy `__doc__`
from . import _prediction as pred

def _get_sigma(sigma, nobs):
    """
    Returns sigma (matrix, nobs by nobs) for GLS and the inverse of its
    Cholesky decomposition.  Handles dimensions and checks integrity.
    If sigma is None, returns None, None. Otherwise returns sigma,
    cholsigmainv.
    """
    if sigma is None:
        return None, None
    sigma = np.asarray(sigma).squeeze()
    if sigma.ndim == 0:
        sigma = np.repeat(sigma, nobs)
    if sigma.ndim == 1:
        if sigma.shape != (nobs,):
            raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
                             "array of shape %s x %s" % (nobs, nobs, nobs))
        cholsigmainv = 1/np.sqrt(sigma)
    else:
        if sigma.shape != (nobs, nobs):
            raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d "
                             "array of shape %s x %s" % (nobs, nobs, nobs))
        cholsigmainv = np.linalg.cholesky(np.linalg.pinv(sigma)).T

    return sigma, cholsigmainv


class RegressionModel(base.LikelihoodModel):
    """
    Base class for linear regression models. Should not be directly called.

    Intended for subclassing.
    """
    def __init__(self, endog, exog, **kwargs):
        super(RegressionModel, self).__init__(endog, exog, **kwargs)
        self._data_attr.extend(['pinv_wexog', 'wendog', 'wexog', 'weights'])

    def initialize(self):
        self.wexog = self.whiten(self.exog)
        self.wendog = self.whiten(self.endog)
        # overwrite nobs from class Model:
        self.nobs = float(self.wexog.shape[0])

        self._df_model = None
        self._df_resid = None
        self.rank = None

    @property
    def df_model(self):
        """
        The model degree of freedom, defined as the rank of the regressor
        matrix minus 1 if a constant is included.
        """
        if self._df_model is None:
            if self.rank is None:
                self.rank = np_matrix_rank(self.exog)
            self._df_model = float(self.rank - self.k_constant)
        return self._df_model

    @df_model.setter
    def df_model(self, value):
        self._df_model = value

    @property
    def df_resid(self):
        """
        The residual degree of freedom, defined as the number of observations
        minus the rank of the regressor matrix.
        """

        if self._df_resid is None:
            if self.rank is None:
                self.rank = np_matrix_rank(self.exog)
            self._df_resid = self.nobs - self.rank
        return self._df_resid

    @df_resid.setter
    def df_resid(self, value):
        self._df_resid = value


    def whiten(self, X):
        raise NotImplementedError("Subclasses should implement.")

    def fit(self, method="pinv", cov_type='nonrobust', cov_kwds=None,
            use_t=None, **kwargs):
        """
        Full fit of the model.

        The results include an estimate of covariance matrix, (whitened)
        residuals and an estimate of scale.

        Parameters
        ----------
        method : str, optional
            Can be "pinv", "qr".  "pinv" uses the Moore-Penrose pseudoinverse
            to solve the least squares problem. "qr" uses the QR
            factorization.
        cov_type : str, optional
            See `regression.linear_model.RegressionResults` for a description
            of the available covariance estimators
        cov_kwds : list or None, optional
            See `linear_model.RegressionResults.get_robustcov_results` for a
            description required keywords for alternative covariance estimators
        use_t : bool, optional
            Flag indicating to use the Student's t distribution when computing
            p-values.  Default behavior depends on cov_type. See
            `linear_model.RegressionResults.get_robustcov_results` for
            implementation details.

        Returns
        -------
        A RegressionResults class instance.

        See Also
        ---------
        regression.linear_model.RegressionResults
        regression.linear_model.RegressionResults.get_robustcov_results

        Notes
        -----
        The fit method uses the pseudoinverse of the design/exogenous variables
        to solve the least squares minimization.
        """
        if method == "pinv":
            if ((not hasattr(self, 'pinv_wexog')) or
                (not hasattr(self, 'normalized_cov_params')) or
                (not hasattr(self, 'rank'))):

                self.pinv_wexog, singular_values = pinv_extended(self.wexog)
                self.normalized_cov_params = np.dot(self.pinv_wexog,
                                        np.transpose(self.pinv_wexog))

                # Cache these singular values for use later.
                self.wexog_singular_values = singular_values
                self.rank = np_matrix_rank(np.diag(singular_values))

            beta = np.dot(self.pinv_wexog, self.wendog)

        elif method == "qr":
            if ((not hasattr(self, 'exog_Q')) or
                (not hasattr(self, 'exog_R')) or
                (not hasattr(self, 'normalized_cov_params')) or
                (getattr(self, 'rank', None) is None)):
                Q, R = np.linalg.qr(self.wexog)
                self.exog_Q, self.exog_R = Q, R
                self.normalized_cov_params = np.linalg.inv(np.dot(R.T, R))

                # Cache singular values from R.
                self.wexog_singular_values = np.linalg.svd(R, 0, 0)
                self.rank = np_matrix_rank(R)
            else:
                Q, R = self.exog_Q, self.exog_R

            # used in ANOVA
            self.effects = effects = np.dot(Q.T, self.wendog)
            beta = np.linalg.solve(R, effects)

        if self._df_model is None:
            self._df_model = float(self.rank - self.k_constant)
        if self._df_resid is None:
            self.df_resid = self.nobs - self.rank

        if isinstance(self, OLS):
            lfit = OLSResults(self, beta,
                       normalized_cov_params=self.normalized_cov_params,
                       cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t)
        else:
            lfit = RegressionResults(self, beta,
                       normalized_cov_params=self.normalized_cov_params,
                       cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t,
                       **kwargs)
        return RegressionResultsWrapper(lfit)


    def predict(self, params, exog=None):
        """
        Return linear predicted values from a design matrix.

        Parameters
        ----------
        params : array-like
            Parameters of a linear model
        exog : array-like, optional.
            Design / exogenous data. Model exog is used if None.

        Returns
        -------
        An array of fitted values

        Notes
        -----
        If the model has not yet been fit, params is not optional.
        """
        #JP: this doesn't look correct for GLMAR
        #SS: it needs its own predict method

        if exog is None:
            exog = self.exog

        return np.dot(exog, params)

    def get_distribution(self, params, scale, exog=None, dist_class=None):
        """
        Returns a random number generator for the predictive distribution.

        Parameters
        ----------
        params : array-like
            The model parameters (regression coefficients).
        scale : scalar
            The variance parameter.
        exog : array-like
            The predictor variable matrix.
        dist_class : class
            A random number generator class.  Must take 'loc' and
            'scale' as arguments and return a random number generator
            implementing an `rvs` method for simulating random values.
            Defaults to Gaussian.

        Returns a frozen random number generator object with mean and
        variance determined by the fitted linear model.  Use the
        ``rvs`` method to generate random values.

        Notes
        -----
        Due to the behavior of ``scipy.stats.distributions objects``,
        the returned random number generator must be called with
        ``gen.rvs(n)`` where ``n`` is the number of observations in
        the data set used to fit the model.  If any other value is
        used for ``n``, misleading results will be produced.
        """
        fit = self.predict(params, exog)
        if dist_class is None:
            from scipy.stats.distributions import norm
            dist_class = norm
        gen = dist_class(loc=fit, scale=np.sqrt(scale))
        return gen


[docs]class GLS(RegressionModel): __doc__ = """ Generalized least squares model with a general covariance structure. %(params)s sigma : scalar or array `sigma` is the weighting matrix of the covariance. The default is None for no scaling. If `sigma` is a scalar, it is assumed that `sigma` is an n x n diagonal matrix with the given scalar, `sigma` as the value of each diagonal element. If `sigma` is an n-length vector, then `sigma` is assumed to be a diagonal matrix with the given `sigma` on the diagonal. This should be the same as WLS. %(extra_params)s **Attributes** pinv_wexog : array `pinv_wexog` is the p x n Moore-Penrose pseudoinverse of `wexog`. cholsimgainv : array The transpose of the Cholesky decomposition of the pseudoinverse. df_model : float p - 1, where p is the number of regressors including the intercept. of freedom. df_resid : float Number of observations n less the number of parameters p. llf : float The value of the likelihood function of the fitted model. nobs : float The number of observations n. normalized_cov_params : array p x p array :math:`(X^{T}\Sigma^{-1}X)^{-1}` results : RegressionResults instance A property that returns the RegressionResults class if fit. sigma : array `sigma` is the n x n covariance structure of the error terms. wexog : array Design matrix whitened by `cholsigmainv` wendog : array Response variable whitened by `cholsigmainv` Notes ----- If sigma is a function of the data making one of the regressors a constant, then the current postestimation statistics will not be correct. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> ols_resid = sm.OLS(data.endog, data.exog).fit().resid >>> res_fit = sm.OLS(ols_resid[1:], ols_resid[:-1]).fit() >>> rho = res_fit.params `rho` is a consistent estimator of the correlation of the residuals from an OLS fit of the longley data. It is assumed that this is the true rho of the AR process data. >>> from scipy.linalg import toeplitz >>> order = toeplitz(np.arange(16)) >>> sigma = rho**order `sigma` is an n x n matrix of the autocorrelation structure of the data. >>> gls_model = sm.GLS(data.endog, data.exog, sigma=sigma) >>> gls_results = gls_model.fit() >>> print(gls_results.summary()) """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc + base._extra_param_doc} def __init__(self, endog, exog, sigma=None, missing='none', hasconst=None, **kwargs): #TODO: add options igls, for iterative fgls if sigma is None #TODO: default if sigma is none should be two-step GLS sigma, cholsigmainv = _get_sigma(sigma, len(endog)) super(GLS, self).__init__(endog, exog, missing=missing, hasconst=hasconst, sigma=sigma, cholsigmainv=cholsigmainv, **kwargs) #store attribute names for data arrays self._data_attr.extend(['sigma', 'cholsigmainv'])
[docs] def whiten(self, X): """ GLS whiten method. Parameters ----------- X : array-like Data to be whitened. Returns ------- np.dot(cholsigmainv,X) See Also -------- regression.GLS """ X = np.asarray(X) if self.sigma is None or self.sigma.shape == (): return X elif self.sigma.ndim == 1: if X.ndim == 1: return X * self.cholsigmainv else: return X * self.cholsigmainv[:, None] else: return np.dot(self.cholsigmainv, X)
[docs] def loglike(self, params): """ Returns the value of the Gaussian log-likelihood function at params. Given the whitened design matrix, the log-likelihood is evaluated at the parameter vector `params` for the dependent variable `endog`. Parameters ---------- params : array-like The parameter estimates Returns ------- loglike : float The value of the log-likelihood function for a GLS Model. Notes ----- The log-likelihood function for the normal distribution is .. math:: -\\frac{n}{2}\\log\\left(\\left(Y-\\hat{Y}\\right)^{\\prime}\\left(Y-\\hat{Y}\\right)\\right)-\\frac{n}{2}\\left(1+\\log\\left(\\frac{2\\pi}{n}\\right)\\right)-\\frac{1}{2}\\log\\left(\\left|\\Sigma\\right|\\right) Y and Y-hat are whitened. """ #TODO: combine this with OLS/WLS loglike and add _det_sigma argument nobs2 = self.nobs / 2.0 SSR = np.sum((self.wendog - np.dot(self.wexog, params))**2, axis=0) llf = -np.log(SSR) * nobs2 # concentrated likelihood llf -= (1+np.log(np.pi/nobs2))*nobs2 # with likelihood constant if np.any(self.sigma): #FIXME: robust-enough check? unneeded if _det_sigma gets defined if self.sigma.ndim==2: det = np.linalg.slogdet(self.sigma) llf -= .5*det[1] else: llf -= 0.5*np.sum(np.log(self.sigma)) # with error covariance matrix return llf
[docs]class WLS(RegressionModel): __doc__ = """ A regression model with diagonal but non-identity covariance structure. The weights are presumed to be (proportional to) the inverse of the variance of the observations. That is, if the variables are to be transformed by 1/sqrt(W) you must supply weights = 1/W. %(params)s weights : array-like, optional 1d array of weights. If you supply 1/W then the variables are pre- multiplied by 1/sqrt(W). If no weights are supplied the default value is 1 and WLS results are the same as OLS. %(extra_params)s Attributes ---------- weights : array The stored weights supplied as an argument. See regression.GLS Examples --------- >>> import numpy as np >>> import statsmodels.api as sm >>> Y = [1,3,4,5,2,3,4] >>> X = range(1,8) >>> X = sm.add_constant(X) >>> wls_model = sm.WLS(Y,X, weights=list(range(1,8))) >>> results = wls_model.fit() >>> results.params array([ 2.91666667, 0.0952381 ]) >>> results.tvalues array([ 2.0652652 , 0.35684428]) >>> print(results.t_test([1, 0])) <T test: effect=array([ 2.91666667]), sd=array([[ 1.41224801]]), t=array([[ 2.0652652]]), p=array([[ 0.04690139]]), df_denom=5> >>> print(results.f_test([0, 1])) <F test: F=array([[ 0.12733784]]), p=[[ 0.73577409]], df_denom=5, df_num=1> Notes ----- If the weights are a function of the data, then the post estimation statistics such as fvalue and mse_model might not be correct, as the package does not yet support no-constant regression. """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc + base._extra_param_doc} def __init__(self, endog, exog, weights=1., missing='none', hasconst=None, **kwargs): weights = np.array(weights) if weights.shape == (): if (missing == 'drop' and 'missing_idx' in kwargs and kwargs['missing_idx'] is not None): # patsy may have truncated endog weights = np.repeat(weights, len(kwargs['missing_idx'])) else: weights = np.repeat(weights, len(endog)) # handle case that endog might be of len == 1 if len(weights) == 1: weights = np.array([weights.squeeze()]) else: weights = weights.squeeze() super(WLS, self).__init__(endog, exog, missing=missing, weights=weights, hasconst=hasconst, **kwargs) nobs = self.exog.shape[0] weights = self.weights # Experimental normalization of weights weights = weights / np.sum(weights) * nobs if weights.size != nobs and weights.shape[0] != nobs: raise ValueError('Weights must be scalar or same length as design')
[docs] def whiten(self, X): """ Whitener for WLS model, multiplies each column by sqrt(self.weights) Parameters ---------- X : array-like Data to be whitened Returns ------- sqrt(weights)*X """ #print(self.weights.var())) X = np.asarray(X) if X.ndim == 1: return X * np.sqrt(self.weights) elif X.ndim == 2: return np.sqrt(self.weights)[:, None]*X
[docs] def loglike(self, params): """ Returns the value of the gaussian log-likelihood function at params. Given the whitened design matrix, the log-likelihood is evaluated at the parameter vector `params` for the dependent variable `Y`. Parameters ---------- params : array-like The parameter estimates. Returns ------- llf : float The value of the log-likelihood function for a WLS Model. Notes -------- .. math:: -\\frac{n}{2}\\log\\left(Y-\\hat{Y}\\right)-\\frac{n}{2}\\left(1+\\log\\left(\\frac{2\\pi}{n}\\right)\\right)-\\frac{1}{2}log\\left(\\left|W\\right|\\right) where :math:`W` is a diagonal matrix """ nobs2 = self.nobs / 2.0 SSR = np.sum((self.wendog - np.dot(self.wexog,params))**2, axis=0) llf = -np.log(SSR) * nobs2 # concentrated likelihood llf -= (1+np.log(np.pi/nobs2))*nobs2 # with constant llf += 0.5 * np.sum(np.log(self.weights)) return llf
[docs]class OLS(WLS): __doc__ = """ A simple ordinary least squares model. %(params)s %(extra_params)s Attributes ---------- weights : scalar Has an attribute weights = array(1.0) due to inheritance from WLS. See Also -------- GLS Examples -------- >>> import numpy as np >>> >>> import statsmodels.api as sm >>> >>> Y = [1,3,4,5,2,3,4] >>> X = range(1,8) >>> X = sm.add_constant(X) >>> >>> model = sm.OLS(Y,X) >>> results = model.fit() >>> results.params array([ 2.14285714, 0.25 ]) >>> results.tvalues array([ 1.87867287, 0.98019606]) >>> print(results.t_test([1, 0])) <T test: effect=array([ 2.14285714]), sd=array([[ 1.14062282]]), t=array([[ 1.87867287]]), p=array([[ 0.05953974]]), df_denom=5> >>> print(results.f_test(np.identity(2))) <F test: F=array([[ 19.46078431]]), p=[[ 0.00437251]], df_denom=5, df_num=2> Notes ----- No constant is added by the model unless you are using formulas. """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc + base._extra_param_doc} #TODO: change example to use datasets. This was the point of datasets! def __init__(self, endog, exog=None, missing='none', hasconst=None, **kwargs): super(OLS, self).__init__(endog, exog, missing=missing, hasconst=hasconst, **kwargs) if "weights" in self._init_keys: self._init_keys.remove("weights")
[docs] def loglike(self, params, scale=None): """ The likelihood function for the OLS model. Parameters ---------- params : array-like The coefficients with which to estimate the log-likelihood. scale : float or None If None, return the profile (concentrated) log likelihood (profiled over the scale parameter), else return the log-likelihood using the given scale value. Returns ------- The likelihood function evaluated at params. """ nobs2 = self.nobs / 2.0 nobs = float(self.nobs) resid = self.endog - np.dot(self.exog, params) if hasattr(self, 'offset'): resid -= self.offset ssr = np.sum(resid**2) if scale is None: # profile log likelihood llf = -nobs2*np.log(2*np.pi) - nobs2*np.log(ssr / nobs) - nobs2 else: # log-likelihood llf = -nobs2 * np.log(2 * np.pi * scale) - ssr / (2*scale) return llf
[docs] def whiten(self, Y): """ OLS model whitener does nothing: returns Y. """ return Y
[docs] def score(self, params, scale=None): """ Evaluate the score function at a given point. The score corresponds to the profile (concentrated) log-likelihood in which the scale parameter has been profiled out. Parameters ---------- params : array-like The parameter vector at which the score function is computed. scale : float or None If None, return the profile (concentrated) log likelihood (profiled over the scale parameter), else return the log-likelihood using the given scale value. Returns ------- The score vector. """ if not hasattr(self, "_wexog_xprod"): self._setup_score_hess() xtxb = np.dot(self._wexog_xprod, params) sdr = -self._wexog_x_wendog + xtxb if scale is None: ssr = self._wendog_xprod - 2 * np.dot(self._wexog_x_wendog.T, params) ssr += np.dot(params, xtxb) return -self.nobs * sdr / ssr else: return -sdr / scale
def _setup_score_hess(self): y = self.wendog if hasattr(self, 'offset'): y = y - self.offset self._wendog_xprod = np.sum(y * y) self._wexog_xprod = np.dot(self.wexog.T, self.wexog) self._wexog_x_wendog = np.dot(self.wexog.T, y)
[docs] def hessian(self, params, scale=None): """ Evaluate the Hessian function at a given point. Parameters ---------- params : array-like The parameter vector at which the Hessian is computed. scale : float or None If None, return the profile (concentrated) log likelihood (profiled over the scale parameter), else return the log-likelihood using the given scale value. Returns ------- The Hessian matrix. """ if not hasattr(self, "_wexog_xprod"): self._setup_score_hess() xtxb = np.dot(self._wexog_xprod, params) if scale is None: ssr = self._wendog_xprod - 2 * np.dot(self._wexog_x_wendog.T, params) ssr += np.dot(params, xtxb) ssrp = -2*self._wexog_x_wendog + 2*xtxb hm = self._wexog_xprod / ssr - np.outer(ssrp, ssrp) / ssr**2 return -self.nobs * hm / 2 else: return -self._wexog_xprod / scale return hess
[docs] def fit_regularized(self, method="elastic_net", alpha=0., L1_wt=1., start_params=None, profile_scale=False, refit=False, **kwargs): """ Return a regularized fit to a linear regression model. Parameters ---------- method : string Only the 'elastic_net' approach is currently implemented. alpha : scalar or array-like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. L1_wt: scalar The fraction of the penalty given to the L1 penalty term. Must be between 0 and 1 (inclusive). If 0, the fit is a ridge fit, if 1 it is a lasso fit. start_params : array-like Starting values for ``params``. profile_scale : bool If True the penalized fit is computed using the profile (concentrated) log-likelihood for the Gaussian model. Otherwise the fit uses the residual sum of squares. refit : bool If True, the model is refit using only the variables that have non-zero coefficients in the regularized fit. The refitted model is not regularized. Returns ------- An array of coefficients, or a RegressionResults object of the same type returned by ``fit``. Notes ----- The elastic net approach closely follows that implemented in the glmnet package in R. The penalty is a combination of L1 and L2 penalties. The function that is minimized is: ..math:: 0.5*RSS/n + alpha*((1-L1_wt)*|params|_2^2/2 + L1_wt*|params|_1) where RSS is the usual regression sum of squares, n is the sample size, and :math:`|*|_1` and :math:`|*|_2` are the L1 and L2 norms. Post-estimation results are based on the same data used to select variables, hence may be subject to overfitting biases. The elastic_net method uses the following keyword arguments: maxiter : int Maximum number of iterations cnvrg_tol : float Convergence threshold for line searches zero_tol : float Coefficients below this threshold are treated as zero. References ---------- Friedman, Hastie, Tibshirani (2008). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1-22 Feb 2010. """ from statsmodels.base.elastic_net import fit_elasticnet if L1_wt == 0: return self._fit_ridge(alpha) # In the future we could add support for other penalties, e.g. SCAD. if method != "elastic_net": raise ValueError("method for fit_regularized must be elastic_net") # Set default parameters. defaults = {"maxiter" : 50, "cnvrg_tol" : 1e-10, "zero_tol" : 1e-10} defaults.update(kwargs) # If a scale parameter is passed in, the non-profile # likelihood (residual sum of squares divided by -2) is used, # otherwise the profile likelihood is used. if profile_scale: loglike_kwds = {} score_kwds = {} hess_kwds = {} else: loglike_kwds = {"scale": 1} score_kwds = {"scale": 1} hess_kwds = {"scale": 1} return fit_elasticnet(self, method=method, alpha=alpha, L1_wt=L1_wt, start_params=start_params, loglike_kwds=loglike_kwds, score_kwds=score_kwds, hess_kwds=hess_kwds, refit=refit, check_step=False, **defaults)
def _fit_ridge(self, alpha): """ Fit a linear model using ridge regression. Parameters ---------- alpha : scalar or array-like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. Notes ----- Equivalent to fit_regularized with L1_wt = 0 (but implemented more efficiently). """ u, s, vt = np.linalg.svd(self.exog, 0) v = vt.T s2 = s*s + alpha * self.nobs params = np.dot(u.T, self.endog) * s / s2 params = np.dot(v, params) from statsmodels.base.elastic_net import RegularizedResults return RegularizedResults(self, params)
[docs]class GLSAR(GLS): __doc__ = """ A regression model with an AR(p) covariance structure. %(params)s rho : int Order of the autoregressive covariance %(extra_params)s Examples -------- >>> import statsmodels.api as sm >>> X = range(1,8) >>> X = sm.add_constant(X) >>> Y = [1,3,4,5,8,10,9] >>> model = sm.GLSAR(Y, X, rho=2) >>> for i in range(6): ... results = model.fit() ... print("AR coefficients: {0}".format(model.rho)) ... rho, sigma = sm.regression.yule_walker(results.resid, ... order=model.order) ... model = sm.GLSAR(Y, X, rho) ... AR coefficients: [ 0. 0.] AR coefficients: [-0.52571491 -0.84496178] AR coefficients: [-0.6104153 -0.86656458] AR coefficients: [-0.60439494 -0.857867 ] AR coefficients: [-0.6048218 -0.85846157] AR coefficients: [-0.60479146 -0.85841922] >>> results.params array([-0.66661205, 1.60850853]) >>> results.tvalues array([ -2.10304127, 21.8047269 ]) >>> print(results.t_test([1, 0])) <T test: effect=array([-0.66661205]), sd=array([[ 0.31697526]]), t=array([[-2.10304127]]), p=array([[ 0.06309969]]), df_denom=3> >>> print(results.f_test(np.identity(2))) <F test: F=array([[ 1815.23061844]]), p=[[ 0.00002372]], df_denom=3, df_num=2> Or, equivalently >>> model2 = sm.GLSAR(Y, X, rho=2) >>> res = model2.iterative_fit(maxiter=6) >>> model2.rho array([-0.60479146, -0.85841922]) Notes ----- GLSAR is considered to be experimental. The linear autoregressive process of order p--AR(p)--is defined as: TODO """ % {'params' : base._model_params_doc, 'extra_params' : base._missing_param_doc + base._extra_param_doc} def __init__(self, endog, exog=None, rho=1, missing='none', **kwargs): #this looks strange, interpreting rho as order if it is int if isinstance(rho, np.int): self.order = rho self.rho = np.zeros(self.order, np.float64) else: self.rho = np.squeeze(np.asarray(rho)) if len(self.rho.shape) not in [0,1]: raise ValueError("AR parameters must be a scalar or a vector") if self.rho.shape == (): self.rho.shape = (1,) self.order = self.rho.shape[0] if exog is None: #JP this looks wrong, should be a regression on constant #results for rho estimate now identical to yule-walker on y #super(AR, self).__init__(endog, add_constant(endog)) super(GLSAR, self).__init__(endog, np.ones((endog.shape[0],1)), missing=missing, **kwargs) else: super(GLSAR, self).__init__(endog, exog, missing=missing, **kwargs)
[docs] def iterative_fit(self, maxiter=3, rtol=1e-4, **kwds): """ Perform an iterative two-stage procedure to estimate a GLS model. The model is assumed to have AR(p) errors, AR(p) parameters and regression coefficients are estimated iteratively. Parameters ---------- maxiter : integer, optional the number of iterations rtol : float, optional Relative tolerance between estimated coefficients to stop the estimation. Stops if max(abs(last - current) / abs(last)) < rtol """ # TODO: update this after going through example. converged = False i = -1 # need to initialize for maxiter < 1 (skip loop) history = {'params': [], 'rho':[self.rho]} for i in range(maxiter - 1): if hasattr(self, 'pinv_wexog'): del self.pinv_wexog self.initialize() results = self.fit() history['params'].append(results.params) if i == 0: last = results.params else: diff = np.max(np.abs(last - results.params) / np.abs(last)) if diff < rtol: converged = True break last = results.params self.rho, _ = yule_walker(results.resid, order=self.order, df=None) history['rho'].append(self.rho) # why not another call to self.initialize # Use kwarg to insert history if not converged and maxiter > 0: # maxiter <= 0 just does OLS if hasattr(self, 'pinv_wexog'): del self.pinv_wexog self.initialize() # if converged then this is a duplicate fit, because we didn't update rho results = self.fit(history=history, **kwds) results.iter = i + 1 # add last fit to history, not if duplicate fit if not converged: results.history['params'].append(results.params) results.iter += 1 results.converged = converged return results
[docs] def whiten(self, X): """ Whiten a series of columns according to an AR(p) covariance structure. This drops initial p observations. Parameters ---------- X : array-like The data to be whitened, Returns ------- whitened array """ #TODO: notation for AR process X = np.asarray(X, np.float64) _X = X.copy() #the following loops over the first axis, works for 1d and nd for i in range(self.order): _X[(i+1):] = _X[(i+1):] - self.rho[i] * X[0:-(i+1)] return _X[self.order:]
[docs]def yule_walker(X, order=1, method="unbiased", df=None, inv=False, demean=True): """ Estimate AR(p) parameters from a sequence X using Yule-Walker equation. Unbiased or maximum-likelihood estimator (mle) See, for example: http://en.wikipedia.org/wiki/Autoregressive_moving_average_model Parameters ---------- X : array-like 1d array order : integer, optional The order of the autoregressive process. Default is 1. method : string, optional Method can be "unbiased" or "mle" and this determines denominator in estimate of autocorrelation function (ACF) at lag k. If "mle", the denominator is n=X.shape[0], if "unbiased" the denominator is n-k. The default is unbiased. df : integer, optional Specifies the degrees of freedom. If `df` is supplied, then it is assumed the X has `df` degrees of freedom rather than `n`. Default is None. inv : bool If inv is True the inverse of R is also returned. Default is False. demean : bool True, the mean is subtracted from `X` before estimation. Returns ------- rho The autoregressive coefficients sigma TODO Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.datasets.sunspots import load >>> data = load() >>> rho, sigma = sm.regression.yule_walker(data.endog, ... order=4, method="mle") >>> rho array([ 1.28310031, -0.45240924, -0.20770299, 0.04794365]) >>> sigma 16.808022730464351 """ #TODO: define R better, look back at notes and technical notes on YW. #First link here is useful #http://www-stat.wharton.upenn.edu/~steele/Courses/956/ResourceDetails/YuleWalkerAndMore.htm method = str(method).lower() if method not in ["unbiased", "mle"]: raise ValueError("ACF estimation method must be 'unbiased' or 'MLE'") X = np.array(X, dtype=np.float64) if demean: X -= X.mean() # automatically demean's X n = df or X.shape[0] if method == "unbiased": # this is df_resid ie., n - p denom = lambda k: n - k else: denom = lambda k: n if X.ndim > 1 and X.shape[1] != 1: raise ValueError("expecting a vector to estimate AR parameters") r = np.zeros(order+1, np.float64) r[0] = (X**2).sum() / denom(0) for k in range(1,order+1): r[k] = (X[0:-k]*X[k:]).sum() / denom(k) R = toeplitz(r[:-1]) rho = np.linalg.solve(R, r[1:]) sigmasq = r[0] - (r[1:]*rho).sum() if inv==True: return rho, np.sqrt(sigmasq), np.linalg.inv(R) else: return rho, np.sqrt(sigmasq)
[docs]class RegressionResults(base.LikelihoodModelResults): """ This class summarizes the fit of a linear regression model. It handles the output of contrasts, estimates of covariance, etc. Returns ------- **Attributes** aic Akaike's information criteria. For a model with a constant :math:`-2llf + 2(df_model + 1)`. For a model without a constant :math:`-2llf + 2(df_model)`. bic Bayes' information criteria. For a model with a constant :math:`-2llf + \log(n)(df_model+1)`. For a model without a constant :math:`-2llf + \log(n)(df_model)` bse The standard errors of the parameter estimates. pinv_wexog See specific model class docstring centered_tss The total (weighted) sum of squares centered about the mean. cov_HC0 Heteroscedasticity robust covariance matrix. See HC0_se below. cov_HC1 Heteroscedasticity robust covariance matrix. See HC1_se below. cov_HC2 Heteroscedasticity robust covariance matrix. See HC2_se below. cov_HC3 Heteroscedasticity robust covariance matrix. See HC3_se below. cov_type Parameter covariance estimator used for standard errors and t-stats df_model Model degress of freedom. The number of regressors `p`. Does not include the constant if one is present df_resid Residual degrees of freedom. `n - p - 1`, if a constant is present. `n - p` if a constant is not included. ess Explained sum of squares. If a constant is present, the centered total sum of squares minus the sum of squared residuals. If there is no constant, the uncentered total sum of squares is used. fvalue F-statistic of the fully specified model. Calculated as the mean squared error of the model divided by the mean squared error of the residuals. f_pvalue p-value of the F-statistic fittedvalues The predicted the values for the original (unwhitened) design. het_scale adjusted squared residuals for heteroscedasticity robust standard errors. Is only available after `HC#_se` or `cov_HC#` is called. See HC#_se for more information. history Estimation history for iterative estimators HC0_se White's (1980) heteroskedasticity robust standard errors. Defined as sqrt(diag(X.T X)^(-1)X.T diag(e_i^(2)) X(X.T X)^(-1) where e_i = resid[i] HC0_se is a cached property. When HC0_se or cov_HC0 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is just resid**2. HC1_se MacKinnon and White's (1985) alternative heteroskedasticity robust standard errors. Defined as sqrt(diag(n/(n-p)*HC_0) HC1_see is a cached property. When HC1_se or cov_HC1 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is n/(n-p)*resid**2. HC2_se MacKinnon and White's (1985) alternative heteroskedasticity robust standard errors. Defined as (X.T X)^(-1)X.T diag(e_i^(2)/(1-h_ii)) X(X.T X)^(-1) where h_ii = x_i(X.T X)^(-1)x_i.T HC2_see is a cached property. When HC2_se or cov_HC2 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is resid^(2)/(1-h_ii). HC3_se MacKinnon and White's (1985) alternative heteroskedasticity robust standard errors. Defined as (X.T X)^(-1)X.T diag(e_i^(2)/(1-h_ii)^(2)) X(X.T X)^(-1) where h_ii = x_i(X.T X)^(-1)x_i.T HC3_see is a cached property. When HC3_se or cov_HC3 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is resid^(2)/(1-h_ii)^(2). model A pointer to the model instance that called fit() or results. mse_model Mean squared error the model. This is the explained sum of squares divided by the model degrees of freedom. mse_resid Mean squared error of the residuals. The sum of squared residuals divided by the residual degrees of freedom. mse_total Total mean squared error. Defined as the uncentered total sum of squares divided by n the number of observations. nobs Number of observations n. normalized_cov_params See specific model class docstring params The linear coefficients that minimize the least squares criterion. This is usually called Beta for the classical linear model. pvalues The two-tailed p values for the t-stats of the params. resid The residuals of the model. resid_pearson `wresid` normalized to have unit variance. rsquared R-squared of a model with an intercept. This is defined here as 1 - `ssr`/`centered_tss` if the constant is included in the model and 1 - `ssr`/`uncentered_tss` if the constant is omitted. rsquared_adj Adjusted R-squared. This is defined here as 1 - (`nobs`-1)/`df_resid` * (1-`rsquared`) if a constant is included and 1 - `nobs`/`df_resid` * (1-`rsquared`) if no constant is included. scale A scale factor for the covariance matrix. Default value is ssr/(n-p). Note that the square root of `scale` is often called the standard error of the regression. ssr Sum of squared (whitened) residuals. uncentered_tss Uncentered sum of squares. Sum of the squared values of the (whitened) endogenous response variable. wresid The residuals of the transformed/whitened regressand and regressor(s) """ _cache = {} # needs to be a class attribute for scale setter? def __init__(self, model, params, normalized_cov_params=None, scale=1., cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): super(RegressionResults, self).__init__(model, params, normalized_cov_params, scale) self._cache = resettable_cache() if hasattr(model, 'wexog_singular_values'): self._wexog_singular_values = model.wexog_singular_values else: self._wexog_singular_values = None self.df_model = model.df_model self.df_resid = model.df_resid if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = {'description' : 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} if use_t is None: self.use_t = True # TODO: class default else: if cov_kwds is None: cov_kwds = {} if 'use_t' in cov_kwds: # TODO: we want to get rid of 'use_t' in cov_kwds use_t_2 = cov_kwds.pop('use_t') if use_t is None: use_t = use_t_2 # TODO: warn or not? self.get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) for key in kwargs: setattr(self, key, kwargs[key]) def __str__(self): self.summary()
[docs] def conf_int(self, alpha=.05, cols=None): """ Returns the confidence interval of the fitted parameters. Parameters ---------- alpha : float, optional The `alpha` level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. cols : array-like, optional `cols` specifies which confidence intervals to return Notes ----- The confidence interval is based on Student's t-distribution. """ # keep method for docstring for now ci = super(RegressionResults, self).conf_int(alpha=alpha, cols=cols) return ci
@cache_readonly
[docs] def nobs(self): return float(self.model.wexog.shape[0])
@cache_readonly
[docs] def fittedvalues(self): return self.model.predict(self.params, self.model.exog)
@cache_readonly
[docs] def wresid(self): return self.model.wendog - self.model.predict(self.params, self.model.wexog)
@cache_readonly
[docs] def resid(self): return self.model.endog - self.model.predict(self.params, self.model.exog)
#TODO: fix writable example @cache_writable()
[docs] def scale(self): wresid = self.wresid return np.dot(wresid, wresid) / self.df_resid
@cache_readonly
[docs] def ssr(self): wresid = self.wresid return np.dot(wresid, wresid)
@cache_readonly
[docs] def centered_tss(self): model = self.model weights = getattr(model, 'weights', None) if weights is not None: return np.sum(weights*(model.endog - np.average(model.endog, weights=weights))**2) else: # this is probably broken for GLS centered_endog = model.wendog - model.wendog.mean() return np.dot(centered_endog, centered_endog)
@cache_readonly
[docs] def uncentered_tss(self): wendog = self.model.wendog return np.dot(wendog, wendog)
@cache_readonly
[docs] def ess(self): if self.k_constant: return self.centered_tss - self.ssr else: return self.uncentered_tss - self.ssr
@cache_readonly
[docs] def rsquared(self): if self.k_constant: return 1 - self.ssr/self.centered_tss else: return 1 - self.ssr/self.uncentered_tss
@cache_readonly
[docs] def rsquared_adj(self): return 1 - np.divide(self.nobs - self.k_constant, self.df_resid) * (1 - self.rsquared)
@cache_readonly
[docs] def mse_model(self): return self.ess/self.df_model
@cache_readonly
[docs] def mse_resid(self): return self.ssr/self.df_resid
@cache_readonly
[docs] def mse_total(self): if self.k_constant: return self.centered_tss / (self.df_resid + self.df_model) else: return self.uncentered_tss / (self.df_resid + self.df_model)
@cache_readonly
[docs] def fvalue(self): if hasattr(self, 'cov_type') and self.cov_type != 'nonrobust': # with heteroscedasticity or correlation robustness k_params = self.normalized_cov_params.shape[0] mat = np.eye(k_params) const_idx = self.model.data.const_idx # TODO: What if model includes implicit constant, e.g. all dummies but no constant regressor? # TODO: Restats as LM test by projecting orthogonalizing to constant? if self.model.data.k_constant == 1: # if constant is implicit, return nan see #2444 if const_idx is None: return np.nan idx = lrange(k_params) idx.pop(const_idx) mat = mat[idx] # remove constant ft = self.f_test(mat) # using backdoor to set another attribute that we already have self._cache['f_pvalue'] = ft.pvalue return ft.fvalue else: # for standard homoscedastic case return self.mse_model/self.mse_resid
@cache_readonly
[docs] def f_pvalue(self): return stats.f.sf(self.fvalue, self.df_model, self.df_resid)
@cache_readonly
[docs] def bse(self): return np.sqrt(np.diag(self.cov_params()))
@cache_readonly
[docs] def aic(self): return -2 * self.llf + 2 * (self.df_model + self.k_constant)
@cache_readonly
[docs] def bic(self): return (-2 * self.llf + np.log(self.nobs) * (self.df_model + self.k_constant))
@cache_readonly
[docs] def eigenvals(self): """ Return eigenvalues sorted in decreasing order. """ if self._wexog_singular_values is not None: eigvals = self._wexog_singular_values ** 2 else: eigvals = np.linalg.linalg.eigvalsh(np.dot(self.model.wexog.T, self.model.wexog)) return np.sort(eigvals)[::-1]
@cache_readonly
[docs] def condition_number(self): """ Return condition number of exogenous matrix. Calculated as ratio of largest to smallest eigenvalue. """ eigvals = self.eigenvals return np.sqrt(eigvals[0]/eigvals[-1])
#TODO: make these properties reset bse def _HCCM(self, scale): H = np.dot(self.model.pinv_wexog, scale[:,None]*self.model.pinv_wexog.T) return H @cache_readonly
[docs] def cov_HC0(self): """ See statsmodels.RegressionResults """ self.het_scale = self.wresid**2 cov_HC0 = self._HCCM(self.het_scale) return cov_HC0
@cache_readonly
[docs] def cov_HC1(self): """ See statsmodels.RegressionResults """ self.het_scale = self.nobs/(self.df_resid)*(self.wresid**2) cov_HC1 = self._HCCM(self.het_scale) return cov_HC1
@cache_readonly
[docs] def cov_HC2(self): """ See statsmodels.RegressionResults """ # probably could be optimized h = np.diag(chain_dot(self.model.wexog, self.normalized_cov_params, self.model.wexog.T)) self.het_scale = self.wresid**2/(1-h) cov_HC2 = self._HCCM(self.het_scale) return cov_HC2
@cache_readonly
[docs] def cov_HC3(self): """ See statsmodels.RegressionResults """ h = np.diag(chain_dot(self.model.wexog, self.normalized_cov_params, self.model.wexog.T)) self.het_scale=(self.wresid/(1-h))**2 cov_HC3 = self._HCCM(self.het_scale) return cov_HC3
@cache_readonly
[docs] def HC0_se(self): """ See statsmodels.RegressionResults """ return np.sqrt(np.diag(self.cov_HC0))
@cache_readonly
[docs] def HC1_se(self): """ See statsmodels.RegressionResults """ return np.sqrt(np.diag(self.cov_HC1))
@cache_readonly
[docs] def HC2_se(self): """ See statsmodels.RegressionResults """ return np.sqrt(np.diag(self.cov_HC2))
@cache_readonly
[docs] def HC3_se(self): """ See statsmodels.RegressionResults """ return np.sqrt(np.diag(self.cov_HC3))
@cache_readonly
[docs] def resid_pearson(self): """ Residuals, normalized to have unit variance. Returns ------- An array wresid/sqrt(scale) """ if not hasattr(self, 'resid'): raise ValueError('Method requires residuals.') eps = np.finfo(self.wresid.dtype).eps if np.sqrt(self.scale) < 10 * eps * self.model.endog.mean(): # don't divide if scale is zero close to numerical precision from warnings import warn warn("All residuals are 0, cannot compute normed residuals.", RuntimeWarning) return self.wresid else: return self.wresid / np.sqrt(self.scale)
def _is_nested(self, restricted): """ Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. Returns ------- nested : bool True if nested, otherwise false Notes ----- A most nests another model if the regressors in the smaller model are spanned by the regressors in the larger model and the regressand is identical. """ if self.model.nobs != restricted.model.nobs: return False full_rank = self.model.rank restricted_rank = restricted.model.rank if full_rank <= restricted_rank: return False restricted_exog = restricted.model.wexog full_wresid = self.wresid scores = restricted_exog * full_wresid[:,None] score_l2 = np.sqrt(np.mean(scores.mean(0) ** 2)) # TODO: Could be improved, and may fail depending on scale of regressors return np.allclose(score_l2,0)
[docs] def compare_lm_test(self, restricted, demean=True, use_lr=False): """Use Lagrange Multiplier test to test whether restricted model is correct Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. demean : bool Flag indicating whether the demean the scores based on the residuals from the restricted model. If True, the covariance of the scores are used and the LM test is identical to the large sample version of the LR test. Returns ------- lm_value : float test statistic, chi2 distributed p_value : float p-value of the test statistic df_diff : int degrees of freedom of the restriction, i.e. difference in df between models Notes ----- TODO: explain LM text """ import statsmodels.stats.sandwich_covariance as sw from numpy.linalg import inv if not self._is_nested(restricted): raise ValueError("Restricted model is not nested by full model.") wresid = restricted.wresid wexog = self.model.wexog scores = wexog * wresid[:,None] n = self.nobs df_full = self.df_resid df_restr = restricted.df_resid df_diff = (df_restr - df_full) s = scores.mean(axis=0) if use_lr: scores = wexog * self.wresid[:,None] demean = False if demean: scores = scores - scores.mean(0)[None,:] # Form matters here. If homoskedastics can be sigma^2 (X'X)^-1 # If Heteroskedastic then the form below is fine # If HAC then need to use HAC # If Cluster, shoudl use cluster cov_type = getattr(self, 'cov_type', 'nonrobust') if cov_type == 'nonrobust': sigma2 = np.mean(wresid**2) XpX = np.dot(wexog.T,wexog) / n Sinv = inv(sigma2 * XpX) elif cov_type in ('HC0', 'HC1', 'HC2', 'HC3'): Sinv = inv(np.dot(scores.T,scores) / n) elif cov_type == 'HAC': print("HAC") maxlags = self.cov_kwds['maxlags'] Sinv = inv(sw.S_hac_simple(scores, maxlags) / n) elif cov_type == 'cluster': #cluster robust standard errors groups = self.cov_kwds['groups'] # TODO: Might need demean option in S_crosssection by group? Sinv = inv(sw.S_crosssection(scores, groups)) else: raise ValueError('Only nonrobust, HC, HAC and cluster are ' + 'currently connected') lm_value = n * chain_dot(s,Sinv,s.T) p_value = stats.chi2.sf(lm_value, df_diff) return lm_value, p_value, df_diff
[docs] def compare_f_test(self, restricted): """use F test to test whether restricted model is correct Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. Returns ------- f_value : float test statistic, F distributed p_value : float p-value of the test statistic df_diff : int degrees of freedom of the restriction, i.e. difference in df between models Notes ----- See mailing list discussion October 17, This test compares the residual sum of squares of the two models. This is not a valid test, if there is unspecified heteroscedasticity or correlation. This method will issue a warning if this is detected but still return the results under the assumption of homoscedasticity and no autocorrelation (sphericity). """ has_robust1 = getattr(self, 'cov_type', 'nonrobust') != 'nonrobust' has_robust2 = (getattr(restricted, 'cov_type', 'nonrobust') != 'nonrobust') if has_robust1 or has_robust2: warnings.warn('F test for comparison is likely invalid with ' + 'robust covariance, proceeding anyway', InvalidTestWarning) ssr_full = self.ssr ssr_restr = restricted.ssr df_full = self.df_resid df_restr = restricted.df_resid df_diff = (df_restr - df_full) f_value = (ssr_restr - ssr_full) / df_diff / ssr_full * df_full p_value = stats.f.sf(f_value, df_diff, df_full) return f_value, p_value, df_diff
[docs] def compare_lr_test(self, restricted, large_sample=False): """ Likelihood ratio test to test whether restricted model is correct Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. large_sample : bool Flag indicating whether to use a heteroskedasticity robust version of the LR test, which is a modified LM test. Returns ------- lr_stat : float likelihood ratio, chisquare distributed with df_diff degrees of freedom p_value : float p-value of the test statistic df_diff : int degrees of freedom of the restriction, i.e. difference in df between models Notes ----- The exact likelihood ratio is valid for homoskedastic data, and is defined as .. math:: D=-2\\log\\left(\\frac{\\mathcal{L}_{null}} {\\mathcal{L}_{alternative}}\\right) where :math:`\mathcal{L}` is the likelihood of the model. With :math:`D` distributed as chisquare with df equal to difference in number of parameters or equivalently difference in residual degrees of freedom. The large sample version of the likelihood ratio is defined as .. math:: D=n s^{\\prime}S^{-1}s where :math:`s=n^{-1}\\sum_{i=1}^{n} s_{i}` .. math:: s_{i} = x_{i,alternative} \\epsilon_{i,null} is the average score of the model evaluated using the residuals from null model and the regressors from the alternative model and :math:`S` is the covariance of the scores, :math:`s_{i}`. The covariance of the scores is estimated using the same estimator as in the alternative model. This test compares the loglikelihood of the two models. This may not be a valid test, if there is unspecified heteroscedasticity or correlation. This method will issue a warning if this is detected but still return the results without taking unspecified heteroscedasticity or correlation into account. This test compares the loglikelihood of the two models. This may not be a valid test, if there is unspecified heteroscedasticity or correlation. This method will issue a warning if this is detected but still return the results without taking unspecified heteroscedasticity or correlation into account. is the average score of the model evaluated using the residuals from null model and the regressors from the alternative model and :math:`S` is the covariance of the scores, :math:`s_{i}`. The covariance of the scores is estimated using the same estimator as in the alternative model. TODO: put into separate function, needs tests """ # See mailing list discussion October 17, if large_sample: return self.compare_lm_test(restricted, use_lr=True) has_robust1 = (getattr(self, 'cov_type', 'nonrobust') != 'nonrobust') has_robust2 = (getattr(restricted, 'cov_type', 'nonrobust') != 'nonrobust') if has_robust1 or has_robust2: warnings.warn('Likelihood Ratio test is likely invalid with ' + 'robust covariance, proceeding anyway', InvalidTestWarning) llf_full = self.llf llf_restr = restricted.llf df_full = self.df_resid df_restr = restricted.df_resid lrdf = (df_restr - df_full) lrstat = -2*(llf_restr - llf_full) lr_pvalue = stats.chi2.sf(lrstat, lrdf) return lrstat, lr_pvalue, lrdf
[docs] def get_robustcov_results(self, cov_type='HC1', use_t=None, **kwds): """create new results instance with robust covariance as default Parameters ---------- cov_type : string the type of robust sandwich estimator to use. see Notes below use_t : bool If true, then the t distribution is used for inference. If false, then the normal distribution is used. If `use_t` is None, then an appropriate default is used, which is `true` if the cov_type is nonrobust, and `false` in all other cases. kwds : depends on cov_type Required or optional arguments for robust covariance calculation. see Notes below Returns ------- results : results instance This method creates a new results instance with the requested robust covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- The following covariance types and required or optional arguments are currently available: - 'fixed scale' and optional keyword argument 'scale' which uses a predefined scale estimate with default equal to one. - 'HC0', 'HC1', 'HC2', 'HC3' and no keyword arguments: heteroscedasticity robust covariance - 'HAC' and keywords - `maxlag` integer (required) : number of lags to use - `kernel` string (optional) : kernel, default is Bartlett - `use_correction` bool (optional) : If true, use small sample correction - 'cluster' and required keyword `groups`, integer group indicator - `groups` array_like, integer (required) : index of clusters or groups - `use_correction` bool (optional) : If True the sandwich covariance is calculated with a small sample correction. If False the sandwich covariance is calculated without small sample correction. - `df_correction` bool (optional) If True (default), then the degrees of freedom for the inferential statistics and hypothesis tests, such as pvalues, f_pvalue, conf_int, and t_test and f_test, are based on the number of groups minus one instead of the total number of observations minus the number of explanatory variables. `df_resid` of the results instance is adjusted. If False, then `df_resid` of the results instance is not adjusted. - 'hac-groupsum' Driscoll and Kraay, heteroscedasticity and autocorrelation robust standard errors in panel data keywords - `time` array_like (required) : index of time periods - `maxlag` integer (required) : number of lags to use - `kernel` string (optional) : kernel, default is Bartlett - `use_correction` False or string in ['hac', 'cluster'] (optional) : If False the the sandwich covariance is calulated without small sample correction. If `use_correction = 'cluster'` (default), then the same small sample correction as in the case of 'covtype='cluster'' is used. - `df_correction` bool (optional) adjustment to df_resid, see cov_type 'cluster' above #TODO: we need more options here - 'hac-panel' heteroscedasticity and autocorrelation robust standard errors in panel data. The data needs to be sorted in this case, the time series for each panel unit or cluster need to be stacked. The membership to a timeseries of an individual or group can be either specified by group indicators or by increasing time periods. keywords - either `groups` or `time` : array_like (required) `groups` : indicator for groups `time` : index of time periods - `maxlag` integer (required) : number of lags to use - `kernel` string (optional) : kernel, default is Bartlett - `use_correction` False or string in ['hac', 'cluster'] (optional) : If False the sandwich covariance is calculated without small sample correction. - `df_correction` bool (optional) adjustment to df_resid, see cov_type 'cluster' above #TODO: we need more options here Reminder: `use_correction` in "hac-groupsum" and "hac-panel" is not bool, needs to be in [False, 'hac', 'cluster'] TODO: Currently there is no check for extra or misspelled keywords, except in the case of cov_type `HCx` """ import statsmodels.stats.sandwich_covariance as sw #normalize names if cov_type == 'nw-panel': cov_type = 'hac-panel' if cov_type == 'nw-groupsum': cov_type = 'hac-groupsum' if 'kernel' in kwds: kwds['weights_func'] = kwds.pop('kernel') # TODO: make separate function that returns a robust cov plus info use_self = kwds.pop('use_self', False) if use_self: res = self else: res = self.__class__(self.model, self.params, normalized_cov_params=self.normalized_cov_params, scale=self.scale) res.cov_type = cov_type # use_t might already be defined by the class, and already set if use_t is None: use_t = self.use_t res.cov_kwds = {'use_t':use_t} # store for information res.use_t = use_t adjust_df = False if cov_type in ['cluster', 'hac-panel', 'hac-groupsum']: df_correction = kwds.get('df_correction', None) # TODO: check also use_correction, do I need all combinations? if df_correction is not False: # i.e. in [None, True]: # user didn't explicitely set it to False adjust_df = True res.cov_kwds['adjust_df'] = adjust_df # verify and set kwds, and calculate cov # TODO: this should be outsourced in a function so we can reuse it in # other models # TODO: make it DRYer repeated code for checking kwds if cov_type in ['fixed scale', 'fixed_scale']: res.cov_kwds['description'] = ('Standard Errors are based on ' + 'fixed scale') res.cov_kwds['scale'] = scale = kwds.get('scale', 1.) res.cov_params_default = scale * res.normalized_cov_params elif cov_type.upper() in ('HC0', 'HC1', 'HC2', 'HC3'): if kwds: raise ValueError('heteroscedasticity robust covarians ' + 'does not use keywords') res.cov_kwds['description'] = ('Standard Errors are heteroscedasticity ' + 'robust ' + '(' + cov_type + ')') # TODO cannot access cov without calling se first getattr(self, cov_type.upper() + '_se') res.cov_params_default = getattr(self, 'cov_' + cov_type.upper()) elif cov_type.lower() == 'hac': maxlags = kwds['maxlags'] # required?, default in cov_hac_simple res.cov_kwds['maxlags'] = maxlags weights_func = kwds.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func use_correction = kwds.get('use_correction', False) res.cov_kwds['use_correction'] = use_correction res.cov_kwds['description'] = ('Standard Errors are heteroscedasticity ' + 'and autocorrelation robust (HAC) using %d lags and %s small ' + 'sample correction') % (maxlags, ['without', 'with'][use_correction]) res.cov_params_default = sw.cov_hac_simple(self, nlags=maxlags, weights_func=weights_func, use_correction=use_correction) elif cov_type.lower() == 'cluster': #cluster robust standard errors, one- or two-way groups = kwds['groups'] if not hasattr(groups, 'shape'): groups = np.asarray(groups).T if groups.ndim >= 2: groups = groups.squeeze() res.cov_kwds['groups'] = groups use_correction = kwds.get('use_correction', True) res.cov_kwds['use_correction'] = use_correction if groups.ndim == 1: if adjust_df: # need to find number of groups # duplicate work self.n_groups = n_groups = len(np.unique(groups)) res.cov_params_default = sw.cov_cluster(self, groups, use_correction=use_correction) elif groups.ndim == 2: if hasattr(groups, 'values'): groups = groups.values if adjust_df: # need to find number of groups # duplicate work n_groups0 = len(np.unique(groups[:,0])) n_groups1 = len(np.unique(groups[:, 1])) self.n_groups = (n_groups0, n_groups1) n_groups = min(n_groups0, n_groups1) # use for adjust_df # Note: sw.cov_cluster_2groups has 3 returns res.cov_params_default = sw.cov_cluster_2groups(self, groups, use_correction=use_correction)[0] else: raise ValueError('only two groups are supported') res.cov_kwds['description'] = ('Standard Errors are robust to' + 'cluster correlation ' + '(' + cov_type + ')') elif cov_type.lower() == 'hac-panel': #cluster robust standard errors res.cov_kwds['time'] = time = kwds.get('time', None) res.cov_kwds['groups'] = groups = kwds.get('groups', None) #TODO: nlags is currently required #nlags = kwds.get('nlags', True) #res.cov_kwds['nlags'] = nlags #TODO: `nlags` or `maxlags` res.cov_kwds['maxlags'] = maxlags = kwds['maxlags'] use_correction = kwds.get('use_correction', 'hac') res.cov_kwds['use_correction'] = use_correction weights_func = kwds.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func if groups is not None: tt = (np.nonzero(groups[:-1] != groups[1:])[0] + 1).tolist() nobs_ = len(groups) elif time is not None: # TODO: clumsy time index in cov_nw_panel tt = (np.nonzero(time[1:] < time[:-1])[0] + 1).tolist() nobs_ = len(time) else: raise ValueError('either time or groups needs to be given') groupidx = lzip([0] + tt, tt + [nobs_]) self.n_groups = n_groups = len(groupidx) res.cov_params_default = sw.cov_nw_panel(self, maxlags, groupidx, weights_func=weights_func, use_correction=use_correction) res.cov_kwds['description'] = ('Standard Errors are robust to' + 'cluster correlation ' + '(' + cov_type + ')') elif cov_type.lower() == 'hac-groupsum': # Driscoll-Kraay standard errors res.cov_kwds['time'] = time = kwds['time'] #TODO: nlags is currently required #nlags = kwds.get('nlags', True) #res.cov_kwds['nlags'] = nlags #TODO: `nlags` or `maxlags` res.cov_kwds['maxlags'] = maxlags = kwds['maxlags'] use_correction = kwds.get('use_correction', 'cluster') res.cov_kwds['use_correction'] = use_correction weights_func = kwds.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func if adjust_df: # need to find number of groups tt = (np.nonzero(time[1:] < time[:-1])[0] + 1) self.n_groups = n_groups = len(tt) + 1 res.cov_params_default = sw.cov_nw_groupsum(self, maxlags, time, weights_func=weights_func, use_correction=use_correction) res.cov_kwds['description'] = ( 'Driscoll and Kraay Standard Errors are robust to ' + 'cluster correlation ' + '(' + cov_type + ')') else: raise ValueError('cov_type not recognized. See docstring for ' + 'available options and spelling') if adjust_df: # Note: df_resid is used for scale and others, add new attribute res.df_resid_inference = n_groups - 1 return res
[docs] def get_prediction(self, exog=None, transform=True, weights=None, row_labels=None, **kwds): return pred.get_prediction(self, exog=exog, transform=transform, weights=weights, row_labels=row_labels, **kwds)
get_prediction.__doc__ = pred.get_prediction.__doc__
[docs] def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ #TODO: import where we need it (for now), add as cached attributes from statsmodels.stats.stattools import (jarque_bera, omni_normtest, durbin_watson) jb, jbpv, skew, kurtosis = jarque_bera(self.wresid) omni, omnipv = omni_normtest(self.wresid) eigvals = self.eigenvals condno = self.condition_number self.diagn = dict(jb=jb, jbpv=jbpv, skew=skew, kurtosis=kurtosis, omni=omni, omnipv=omnipv, condno=condno, mineigval=eigvals[-1]) #TODO not used yet #diagn_left_header = ['Models stats'] #diagn_right_header = ['Residual stats'] #TODO: requiring list/iterable is a bit annoying #need more control over formatting #TODO: default don't work if it's not identically spelled top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Least Squares']), ('Date:', None), ('Time:', None), ('No. Observations:', None), ('Df Residuals:', None), #[self.df_resid]), #TODO: spelling ('Df Model:', None), #[self.df_model]) ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) top_right = [('R-squared:', ["%#8.3f" % self.rsquared]), ('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]), ('F-statistic:', ["%#8.4g" % self.fvalue] ), ('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]), ('Log-Likelihood:', None), #["%#6.4g" % self.llf]), ('AIC:', ["%#8.4g" % self.aic]), ('BIC:', ["%#8.4g" % self.bic]) ] diagn_left = [('Omnibus:', ["%#6.3f" % omni]), ('Prob(Omnibus):', ["%#6.3f" % omnipv]), ('Skew:', ["%#6.3f" % skew]), ('Kurtosis:', ["%#6.3f" % kurtosis]) ] diagn_right = [('Durbin-Watson:', ["%#8.3f" % durbin_watson(self.wresid)]), ('Jarque-Bera (JB):', ["%#8.3f" % jb]), ('Prob(JB):', ["%#8.3g" % jbpv]), ('Cond. No.', ["%#8.3g" % condno]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" #create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, yname=yname, xname=xname, title="") #add warnings/notes, added to text format only etext =[] if hasattr(self, 'cov_type'): etext.append(self.cov_kwds['description']) if self.model.exog.shape[0] < self.model.exog.shape[1]: wstr = "The input rank is higher than the number of observations." etext.append(wstr) if eigvals[-1] < 1e-10: wstr = "The smallest eigenvalue is %6.3g. This might indicate " wstr += "that there are\n" wstr += "strong multicollinearity problems or that the design " wstr += "matrix is singular." wstr = wstr % eigvals[-1] etext.append(wstr) elif condno > 1000: #TODO: what is recommended wstr = "The condition number is large, %6.3g. This might " wstr += "indicate that there are\n" wstr += "strong multicollinearity or other numerical " wstr += "problems." wstr = wstr % condno etext.append(wstr) if etext: etext = ["[{0}] {1}".format(i + 1, text) for i, text in enumerate(etext)] etext.insert(0, "Warnings:") smry.add_extra_txt(etext) return smry
#top = summary_top(self, gleft=topleft, gright=diagn_left, #[], # yname=yname, xname=xname, # title=self.model.__class__.__name__ + ' ' + # "Regression Results") #par = summary_params(self, yname=yname, xname=xname, alpha=.05, # use_t=False) # #diagn = summary_top(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="Linear Model") # #return summary_return([top, par, diagn], return_fmt=return_fmt)
[docs] def summary2(self, yname=None, xname=None, title=None, alpha=.05, float_format="%.4f"): """Experimental summary function to summarize the regression results Parameters ----------- xname : List of strings of length equal to the number of parameters Names of the independent variables (optional) yname : string Name of the dependent variable (optional) title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals float_format: string print format for floats in parameters summary Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ # Diagnostics from statsmodels.stats.stattools import (jarque_bera, omni_normtest, durbin_watson) from statsmodels.compat.collections import OrderedDict jb, jbpv, skew, kurtosis = jarque_bera(self.wresid) omni, omnipv = omni_normtest(self.wresid) dw = durbin_watson(self.wresid) eigvals = self.eigenvals condno = self.condition_number eigvals = np.sort(eigvals) #in increasing order diagnostic = OrderedDict([ ('Omnibus:', "%.3f" % omni), ('Prob(Omnibus):', "%.3f" % omnipv), ('Skew:', "%.3f" % skew), ('Kurtosis:', "%.3f" % kurtosis), ('Durbin-Watson:', "%.3f" % dw), ('Jarque-Bera (JB):', "%.3f" % jb), ('Prob(JB):', "%.3f" % jbpv), ('Condition No.:', "%.0f" % condno) ]) # Summary from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) smry.add_dict(diagnostic) # Warnings if eigvals[-1] < 1e-10: warn = "The smallest eigenvalue is %6.3g. This might indicate that\ there are strong multicollinearity problems or that the design\ matrix is singular." % eigvals[-1] smry.add_text(warn) if condno > 1000: warn = "* The condition number is large (%.g). This might indicate \ strong multicollinearity or other numerical problems." % condno smry.add_text(warn) return smry
[docs]class OLSResults(RegressionResults): """ Results class for for an OLS model. Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are: - get_influence - outlier_test - el_test - conf_int_el See Also -------- RegressionResults """
[docs] def get_influence(self): """ get an instance of Influence with influence and outlier measures Returns ------- infl : Influence instance the instance has methods to calculate the main influence and outlier measures for the OLS regression See also -------- statsmodels.stats.outliers_influence.OLSInfluence """ from statsmodels.stats.outliers_influence import OLSInfluence return OLSInfluence(self)
[docs] def outlier_test(self, method='bonf', alpha=.05): """ Test observations for outliers according to method Parameters ---------- method : str - `bonferroni` : one-step correction - `sidak` : one-step correction - `holm-sidak` : - `holm` : - `simes-hochberg` : - `hommel` : - `fdr_bh` : Benjamini/Hochberg - `fdr_by` : Benjamini/Yekutieli See `statsmodels.stats.multitest.multipletests` for details. alpha : float familywise error rate Returns ------- table : ndarray or DataFrame Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method. Notes ----- The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1. """ from statsmodels.stats.outliers_influence import outlier_test return outlier_test(self, method, alpha)
[docs] def el_test(self, b0_vals, param_nums, return_weights=0, ret_params=0, method='nm', stochastic_exog=1, return_params=0): """ Tests single or joint hypotheses of the regression parameters using Empirical Likelihood. Parameters ---------- b0_vals : 1darray The hypothesized value of the parameter to be tested param_nums : 1darray The parameter number to be tested print_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. Default is False ret_params : bool If true, returns the parameter vector that maximizes the likelihood ratio at b0_vals. Also returns the weights. Default is False method : string Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm' stochastic_exog : bool When TRUE, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. Default = TRUE Returns ------- res : tuple The p-value and -2 times the log-likelihood ratio for the hypothesized values. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.stackloss.load() >>> endog = data.endog >>> exog = sm.add_constant(data.exog) >>> model = sm.OLS(endog, exog) >>> fitted = model.fit() >>> fitted.params >>> array([-39.91967442, 0.7156402 , 1.29528612, -0.15212252]) >>> fitted.rsquared >>> 0.91357690446068196 >>> # Test that the slope on the first variable is 0 >>> fitted.el_test([0], [1]) >>> (27.248146353888796, 1.7894660442330235e-07) """ params = np.copy(self.params) opt_fun_inst = _ELRegOpts() # to store weights if len(param_nums) == len(params): llr = opt_fun_inst._opt_nuis_regress([], param_nums=param_nums, endog=self.model.endog, exog=self.model.exog, nobs=self.model.nobs, nvar=self.model.exog.shape[1], params=params, b0_vals=b0_vals, stochastic_exog=stochastic_exog) pval = 1 - stats.chi2.cdf(llr, len(param_nums)) if return_weights: return llr, pval, opt_fun_inst.new_weights else: return llr, pval x0 = np.delete(params, param_nums) args = (param_nums, self.model.endog, self.model.exog, self.model.nobs, self.model.exog.shape[1], params, b0_vals, stochastic_exog) if method == 'nm': llr = optimize.fmin(opt_fun_inst._opt_nuis_regress, x0, maxfun=10000, maxiter=10000, full_output=1, disp=0, args=args)[1] if method == 'powell': llr = optimize.fmin_powell(opt_fun_inst._opt_nuis_regress, x0, full_output=1, disp=0, args=args)[1] pval = 1 - stats.chi2.cdf(llr, len(param_nums)) if ret_params: return llr, pval, opt_fun_inst.new_weights, opt_fun_inst.new_params elif return_weights: return llr, pval, opt_fun_inst.new_weights else: return llr, pval
[docs] def conf_int_el(self, param_num, sig=.05, upper_bound=None, lower_bound=None, method='nm', stochastic_exog=1): """ Computes the confidence interval for the parameter given by param_num using Empirical Likelihood Parameters ---------- param_num : float The parameter for which the confidence interval is desired sig : float The significance level. Default is .05 upper_bound : float The maximum value the upper limit can be. Default is the 99.9% confidence value under OLS assumptions. lower_bound : float The minimum value the lower limit can be. Default is the 99.9% confidence value under OLS assumptions. method : string Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm' Returns ------- ci : tuple The confidence interval See Also -------- el_test Notes ----- This function uses brentq to find the value of beta where test_beta([beta], param_num)[1] is equal to the critical value. The function returns the results of each iteration of brentq at each value of beta. The current function value of the last printed optimization should be the critical value at the desired significance level. For alpha=.05, the value is 3.841459. To ensure optimization terminated successfully, it is suggested to do el_test([lower_limit], [param_num]) If the optimization does not terminate successfully, consider switching optimization algorithms. If optimization is still not successful, try changing the values of start_int_params. If the current function value repeatedly jumps from a number between 0 and the critical value and a very large number (>50), the starting parameters of the interior minimization need to be changed. """ r0 = stats.chi2.ppf(1 - sig, 1) if upper_bound is None: upper_bound = self.conf_int(.01)[param_num][1] if lower_bound is None: lower_bound = self.conf_int(.01)[param_num][0] f = lambda b0: self.el_test(np.array([b0]), np.array([param_num]), method=method, stochastic_exog=stochastic_exog)[0]-r0 lowerl = optimize.brenth(f, lower_bound, self.params[param_num]) upperl = optimize.brenth(f, self.params[param_num], upper_bound) # ^ Seems to be faster than brentq in most cases return (lowerl, upperl)
class RegressionResultsWrapper(wrap.ResultsWrapper): _attrs = { 'chisq' : 'columns', 'sresid' : 'rows', 'weights' : 'rows', 'wresid' : 'rows', 'bcov_unscaled' : 'cov', 'bcov_scaled' : 'cov', 'HC0_se' : 'columns', 'HC1_se' : 'columns', 'HC2_se' : 'columns', 'HC3_se' : 'columns', 'norm_resid' : 'rows', } _wrap_attrs = wrap.union_dicts(base.LikelihoodResultsWrapper._attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts( base.LikelihoodResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(RegressionResultsWrapper, RegressionResults) if __name__ == "__main__": import statsmodels.api as sm data = sm.datasets.longley.load() data.exog = add_constant(data.exog, prepend=False) ols_results = OLS(data.endog, data.exog).fit() #results gls_results = GLS(data.endog, data.exog).fit() #results print(ols_results.summary()) tables = ols_results.summary(returns='tables') csv = ols_results.summary(returns='csv') """ Summary of Regression Results ======================================= | Dependent Variable: ['y']| | Model: OLS| | Method: Least Squares| | Date: Tue, 29 Jun 2010| | Time: 22:32:21| | # obs: 16.0| | Df residuals: 9.0| | Df model: 6.0| =========================================================================== | coefficient std. error t-statistic prob.| --------------------------------------------------------------------------- | x1 15.0619 84.9149 0.1774 0.8631| | x2 -0.0358 0.0335 -1.0695 0.3127| | x3 -2.0202 0.4884 -4.1364 0.002535| | x4 -1.0332 0.2143 -4.8220 0.0009444| | x5 -0.0511 0.2261 -0.2261 0.8262| | x6 1829.1515 455.4785 4.0159 0.003037| | const -3482258.6346 890420.3836 -3.9108 0.003560| =========================================================================== | Models stats Residual stats | --------------------------------------------------------------------------- | R-squared: 0.995479 Durbin-Watson: 2.55949 | | Adjusted R-squared: 0.992465 Omnibus: 0.748615 | | F-statistic: 330.285 Prob(Omnibus): 0.687765 | | Prob (F-statistic): 4.98403e-10 JB: 0.352773 | | Log likelihood: -109.617 Prob(JB): 0.838294 | | AIC criterion: 233.235 Skew: 0.419984 | | BIC criterion: 238.643 Kurtosis: 2.43373 | --------------------------------------------------------------------------- """