This example page shows how to use statsmodels
' QuantReg
class to replicate parts of the analysis published in
We are interested in the relationship between income and expenditures on food for a sample of working class Belgian households in 1857 (the Engel data).
We first need to load some modules and to retrieve the data. Conveniently, the Engel dataset is shipped with statsmodels
.
%matplotlib inline
from __future__ import print_function
import patsy
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from statsmodels.regression.quantile_regression import QuantReg
data = sm.datasets.engel.load_pandas().data
data.head()
The LAD model is a special case of quantile regression where q=0.5
mod = smf.quantreg('foodexp ~ income', data)
res = mod.fit(q=.5)
print(res.summary())
We estimate the quantile regression model for many quantiles between .05 and .95, and compare best fit line from each of these models to Ordinary Least Squares results.
For convenience, we place the quantile regression results in a Pandas DataFrame, and the OLS results in a dictionary.
quantiles = np.arange(.05, .96, .1)
def fit_model(q):
res = mod.fit(q=q)
return [q, res.params['Intercept'], res.params['income']] + \
res.conf_int().ix['income'].tolist()
models = [fit_model(x) for x in quantiles]
models = pd.DataFrame(models, columns=['q', 'a', 'b','lb','ub'])
ols = smf.ols('foodexp ~ income', data).fit()
ols_ci = ols.conf_int().ix['income'].tolist()
ols = dict(a = ols.params['Intercept'],
b = ols.params['income'],
lb = ols_ci[0],
ub = ols_ci[1])
print(models)
print(ols)
This plot compares best fit lines for 10 quantile regression models to the least squares fit. As Koenker and Hallock (2001) point out, we see that:
x = np.arange(data.income.min(), data.income.max(), 50)
get_y = lambda a, b: a + b * x
fig, ax = plt.subplots(figsize=(8, 6))
for i in range(models.shape[0]):
y = get_y(models.a[i], models.b[i])
ax.plot(x, y, linestyle='dotted', color='grey')
y = get_y(ols['a'], ols['b'])
ax.plot(x, y, color='red', label='OLS')
ax.scatter(data.income, data.foodexp, alpha=.2)
ax.set_xlim((240, 3000))
ax.set_ylim((240, 2000))
legend = ax.legend()
ax.set_xlabel('Income', fontsize=16)
ax.set_ylabel('Food expenditure', fontsize=16);
The dotted black lines form 95% point-wise confidence band around 10 quantile regression estimates (solid black line). The red lines represent OLS regression results along with their 95% confindence interval.
In most cases, the quantile regression point estimates lie outside the OLS confidence interval, which suggests that the effect of income on food expenditure may not be constant across the distribution.
n = models.shape[0]
p1 = plt.plot(models.q, models.b, color='black', label='Quantile Reg.')
p2 = plt.plot(models.q, models.ub, linestyle='dotted', color='black')
p3 = plt.plot(models.q, models.lb, linestyle='dotted', color='black')
p4 = plt.plot(models.q, [ols['b']] * n, color='red', label='OLS')
p5 = plt.plot(models.q, [ols['lb']] * n, linestyle='dotted', color='red')
p6 = plt.plot(models.q, [ols['ub']] * n, linestyle='dotted', color='red')
plt.ylabel(r'$\beta_{income}$')
plt.xlabel('Quantiles of the conditional food expenditure distribution')
plt.legend()
plt.show()