This is a brief introduction notebook to VARMAX models in Statsmodels. The VARMAX model is generically specified as: $$ y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t + M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q} $$
where $y_t$ is a $\text{k_endog} \times 1$ vector.
%matplotlib inline
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
dta = sm.datasets.webuse('lutkepohl2', 'http://www.stata-press.com/data/r12/')
dta.index = dta.qtr
endog = dta.ix['1960-04-01':'1978-10-01', ['dln_inv', 'dln_inc', 'dln_consump']]
The VARMAX
class in Statsmodels allows estimation of VAR, VMA, and VARMA models (through the order
argument), optionally with a constant term (via the trend
argument). Exogenous regressors may also be included (as usual in Statsmodels, by the exog
argument), and in this way a time trend may be added. Finally, the class allows measurement error (via the measurement_error
argument) and allows specifying either a diagonal or unstructured innovation covariance matrix (via the error_cov_type
argument).
Below is a simple VARX(2) model in two endogenous variables and an exogenous series, but no constant term. Notice that we needed to allow for more iterations than the default (which is maxiter=50
) in order for the likelihood estimation to converge. This is not unusual in VAR models which have to estimate a large number of parameters, often on a relatively small number of time series: this model, for example, estimates 27 parameters off of 75 observations of 3 variables.
exog = endog['dln_consump']
mod = sm.tsa.VARMAX(endog[['dln_inv', 'dln_inc']], order=(2,0), trend='nc', exog=exog)
res = mod.fit(maxiter=1000, disp=False)
print(res.summary())
From the estimated VAR model, we can plot the impulse response functions of the endogenous variables.
ax = res.impulse_responses(10, orthogonalized=True).plot(figsize=(13,3))
ax.set(xlabel='t', title='Responses to a shock to `dln_inv`');
A vector moving average model can also be formulated. Below we show a VMA(2) on the same data, but where the innovations to the process are uncorrelated. In this example we leave out the exogenous regressor but now include the constant term.
mod = sm.tsa.VARMAX(endog[['dln_inv', 'dln_inc']], order=(0,2), error_cov_type='diagonal')
res = mod.fit(maxiter=1000, disp=False)
print(res.summary())
Although the model allows estimating VARMA(p,q) specifications, these models are not identified without additional restrictions on the representation matrices, which are not built-in. For this reason, it is recommended that the user proceed with error (and indeed a warning is issued when these models are specified). Nonetheless, they may in some circumstances provide useful information.
mod = sm.tsa.VARMAX(endog[['dln_inv', 'dln_inc']], order=(1,1))
res = mod.fit(maxiter=1000, disp=False)
print(res.summary())