statsmodels.regression.linear_model.OLS.get_distribution¶
-
OLS.
get_distribution
(params, scale, exog=None, dist_class=None)¶ Returns a random number generator for the predictive distribution.
Parameters: params : array-like
The model parameters (regression coefficients).
scale : scalar
The variance parameter.
exog : array-like
The predictor variable matrix.
dist_class : class
A random number generator class. Must take ‘loc’ and ‘scale’ as arguments and return a random number generator implementing an rvs method for simulating random values. Defaults to Gaussian.
Returns a frozen random number generator object with mean and
variance determined by the fitted linear model. Use the
``rvs`` method to generate random values.
Notes
Due to the behavior of
scipy.stats.distributions objects
, the returned random number generator must be called withgen.rvs(n)
wheren
is the number of observations in the data set used to fit the model. If any other value is used forn
, misleading results will be produced.