statsmodels.regression.linear_model.RegressionResults.cov_params¶
-
RegressionResults.
cov_params
(r_matrix=None, column=None, scale=None, cov_p=None, other=None)¶ Returns the variance/covariance matrix.
The variance/covariance matrix can be of a linear contrast of the estimates of params or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar.
Parameters: r_matrix : array-like
Can be 1d, or 2d. Can be used alone or with other.
column : array-like, optional
Must be used on its own. Can be 0d or 1d see below.
scale : float, optional
Can be specified or not. Default is None, which means that the scale argument is taken from the model.
other : array-like, optional
Can be used when r_matrix is specified.
Returns: cov : ndarray
covariance matrix of the parameter estimates or of linear combination of parameter estimates. See Notes.
Notes
(The below are assumed to be in matrix notation.)
If no argument is specified returns the covariance matrix of a model
(scale)*(X.T X)^(-1)
If contrast is specified it pre and post-multiplies as follows
(scale) * r_matrix (X.T X)^(-1) r_matrix.T
If contrast and other are specified returns
(scale) * r_matrix (X.T X)^(-1) other.T
If column is specified returns
(scale) * (X.T X)^(-1)[column,column]
if column is 0dOR
(scale) * (X.T X)^(-1)[column][:,column]
if column is 1d