statsmodels.regression.mixed_linear_model.MixedLM.fit¶
-
MixedLM.
fit
(start_params=None, reml=True, niter_sa=0, do_cg=True, fe_pen=None, cov_pen=None, free=None, full_output=False, method='bfgs', **kwargs)[source]¶ Fit a linear mixed model to the data.
Parameters: start_params: array-like or MixedLMParams
Starting values for the profile log-likelihood. If not a MixedLMParams instance, this should be an array containing the packed parameters for the profile log-likelihood, including the fixed effects parameters.
reml : bool
If true, fit according to the REML likelihood, else fit the standard likelihood using ML.
cov_pen : CovariancePenalty object
A penalty for the random effects covariance matrix
fe_pen : Penalty object
A penalty on the fixed effects
free : MixedLMParams object
If not None, this is a mask that allows parameters to be held fixed at specified values. A 1 indicates that the correspondinig parameter is estimated, a 0 indicates that it is fixed at its starting value. Setting the cov_re component to the identity matrix fits a model with independent random effects. Note that some optimization methods do not respect this constraint (bfgs and lbfgs both work).
full_output : bool
If true, attach iteration history to results
method : string
Optimization method.
Returns: A MixedLMResults instance.