statsmodels.regression.mixed_linear_model.MixedLMResults¶
-
class
statsmodels.regression.mixed_linear_model.
MixedLMResults
(model, params, cov_params)[source]¶ Class to contain results of fitting a linear mixed effects model.
MixedLMResults inherits from statsmodels.LikelihoodModelResults
Parameters: See statsmodels.LikelihoodModelResults
Returns: Attributes
model : class instance
Pointer to PHreg model instance that called fit.
normalized_cov_params : array
The sampling covariance matrix of the estimates
fe_params : array
The fitted fixed-effects coefficients
re_params : array
The fitted random-effects covariance matrix
bse_fe : array
The standard errors of the fitted fixed effects coefficients
bse_re : array
The standard errors of the fitted random effects covariance matrix
See also
statsmodels.LikelihoodModelResults
Methods
aic
()bic
()bootstrap
([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator bse
()bse_fe
()Returns the standard errors of the fixed effect regression coefficients. bse_re
()Returns the standard errors of the variance parameters. bsejac
()standard deviation of parameter estimates based on covjac bsejhj
()standard deviation of parameter estimates based on covHJH conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params
([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. covjac
()covariance of parameters based on outer product of jacobian of covjhj
()covariance of parameters based on HJJH df_modelwc
()f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()Returns the fitted values for the model. get_nlfun
(fun)hessv
()cached Hessian of log-likelihood initialize
(model, params, **kwd)jacv
(*args, **kwds)jacv is deprecated, use score_obsv instead! llf
()load
(fname)load a pickle, (class method) normalized_cov_params
()predict
([exog, transform])Call self.model.predict with self.params as the first argument. profile_re
(re_ix, vtype[, num_low, ...])Profile-likelihood inference for variance parameters. pvalues
()random_effects
()The conditional means of random effects given the data. random_effects_cov
()Returns the conditional covariance matrix of the random effects for each group given the data. remove_data
()remove data arrays, all nobs arrays from result and model resid
()Returns the residuals for the model. save
(fname[, remove_data])save a pickle of this instance score_obsv
()cached Jacobian of log-likelihood summary
([yname, xname_fe, xname_re, title, ...])Summarize the mixed model regression results. t_test
(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues
()Return the t-statistic for a given parameter estimate. wald_test
(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns Methods
aic
()bic
()bootstrap
([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator bse
()bse_fe
()Returns the standard errors of the fixed effect regression coefficients. bse_re
()Returns the standard errors of the variance parameters. bsejac
()standard deviation of parameter estimates based on covjac bsejhj
()standard deviation of parameter estimates based on covHJH conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params
([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. covjac
()covariance of parameters based on outer product of jacobian of covjhj
()covariance of parameters based on HJJH df_modelwc
()f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()Returns the fitted values for the model. get_nlfun
(fun)hessv
()cached Hessian of log-likelihood initialize
(model, params, **kwd)jacv
(*args, **kwds)jacv is deprecated, use score_obsv instead! llf
()load
(fname)load a pickle, (class method) normalized_cov_params
()predict
([exog, transform])Call self.model.predict with self.params as the first argument. profile_re
(re_ix, vtype[, num_low, ...])Profile-likelihood inference for variance parameters. pvalues
()random_effects
()The conditional means of random effects given the data. random_effects_cov
()Returns the conditional covariance matrix of the random effects for each group given the data. remove_data
()remove data arrays, all nobs arrays from result and model resid
()Returns the residuals for the model. save
(fname[, remove_data])save a pickle of this instance score_obsv
()cached Jacobian of log-likelihood summary
([yname, xname_fe, xname_re, title, ...])Summarize the mixed model regression results. t_test
(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues
()Return the t-statistic for a given parameter estimate. wald_test
(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns Attributes
use_t