statsmodels.sandbox.regression.gmm.IVRegressionResults¶
-
class
statsmodels.sandbox.regression.gmm.
IVRegressionResults
(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs)[source]¶ Results class for for an OLS model.
Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are:
- get_influence
- outlier_test
- el_test
- conf_int_el
See also
RegressionResults
Methods
HC0_se
()See statsmodels.RegressionResults HC1_se
()See statsmodels.RegressionResults HC2_se
()See statsmodels.RegressionResults HC3_se
()See statsmodels.RegressionResults aic
()bic
()bse
()centered_tss
()compare_f_test
(restricted)use F test to test whether restricted model is correct compare_lm_test
(restricted[, demean, use_lr])Use Lagrange Multiplier test to test whether restricted model is correct compare_lr_test
(restricted[, large_sample])Likelihood ratio test to test whether restricted model is correct condition_number
()Return condition number of exogenous matrix. conf_int
([alpha, cols])Returns the confidence interval of the fitted parameters. cov_HC0
()See statsmodels.RegressionResults cov_HC1
()See statsmodels.RegressionResults cov_HC2
()See statsmodels.RegressionResults cov_HC3
()See statsmodels.RegressionResults cov_params
([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. eigenvals
()Return eigenvalues sorted in decreasing order. ess
()f_pvalue
()f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()fvalue
()get_prediction
([exog, transform, weights, ...])compute prediction results get_robustcov_results
([cov_type, use_t])create new results instance with robust covariance as default initialize
(model, params, **kwd)llf
()load
(fname)load a pickle, (class method) mse_model
()mse_resid
()mse_total
()nobs
()normalized_cov_params
()predict
([exog, transform])Call self.model.predict with self.params as the first argument. pvalues
()remove_data
()remove data arrays, all nobs arrays from result and model resid
()resid_pearson
()Residuals, normalized to have unit variance. rsquared
()rsquared_adj
()save
(fname[, remove_data])save a pickle of this instance scale
()spec_hausman
([dof])Hausman’s specification test ssr
()summary
([yname, xname, title, alpha])Summarize the Regression Results summary2
([yname, xname, title, alpha, ...])Experimental summary function to summarize the regression results t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues
()Return the t-statistic for a given parameter estimate. uncentered_tss
()wald_test
(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns wresid
()Methods
HC0_se
()See statsmodels.RegressionResults HC1_se
()See statsmodels.RegressionResults HC2_se
()See statsmodels.RegressionResults HC3_se
()See statsmodels.RegressionResults aic
()bic
()bse
()centered_tss
()compare_f_test
(restricted)use F test to test whether restricted model is correct compare_lm_test
(restricted[, demean, use_lr])Use Lagrange Multiplier test to test whether restricted model is correct compare_lr_test
(restricted[, large_sample])Likelihood ratio test to test whether restricted model is correct condition_number
()Return condition number of exogenous matrix. conf_int
([alpha, cols])Returns the confidence interval of the fitted parameters. cov_HC0
()See statsmodels.RegressionResults cov_HC1
()See statsmodels.RegressionResults cov_HC2
()See statsmodels.RegressionResults cov_HC3
()See statsmodels.RegressionResults cov_params
([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. eigenvals
()Return eigenvalues sorted in decreasing order. ess
()f_pvalue
()f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()fvalue
()get_prediction
([exog, transform, weights, ...])compute prediction results get_robustcov_results
([cov_type, use_t])create new results instance with robust covariance as default initialize
(model, params, **kwd)llf
()load
(fname)load a pickle, (class method) mse_model
()mse_resid
()mse_total
()nobs
()normalized_cov_params
()predict
([exog, transform])Call self.model.predict with self.params as the first argument. pvalues
()remove_data
()remove data arrays, all nobs arrays from result and model resid
()resid_pearson
()Residuals, normalized to have unit variance. rsquared
()rsquared_adj
()save
(fname[, remove_data])save a pickle of this instance scale
()spec_hausman
([dof])Hausman’s specification test ssr
()summary
([yname, xname, title, alpha])Summarize the Regression Results summary2
([yname, xname, title, alpha, ...])Experimental summary function to summarize the regression results t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues
()Return the t-statistic for a given parameter estimate. uncentered_tss
()wald_test
(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns wresid
()Attributes
use_t