Source code for statsmodels.graphics.factorplots

# -*- coding: utf-8 -*-
"""
Authors:    Josef Perktold, Skipper Seabold, Denis A. Engemann
"""
from statsmodels.compat.python import get_function_name, iterkeys, lrange, zip, iteritems
import numpy as np

from statsmodels.graphics.plottools import rainbow
import statsmodels.graphics.utils as utils


[docs]def interaction_plot(x, trace, response, func=np.mean, ax=None, plottype='b', xlabel=None, ylabel=None, colors=None, markers=None, linestyles=None, legendloc='best', legendtitle=None, **kwargs): """ Interaction plot for factor level statistics. Note. If categorial factors are supplied levels will be internally recoded to integers. This ensures matplotlib compatiblity. uses pandas.DataFrame to calculate an `aggregate` statistic for each level of the factor or group given by `trace`. Parameters ---------- x : array-like The `x` factor levels constitute the x-axis. If a `pandas.Series` is given its name will be used in `xlabel` if `xlabel` is None. trace : array-like The `trace` factor levels will be drawn as lines in the plot. If `trace` is a `pandas.Series` its name will be used as the `legendtitle` if `legendtitle` is None. response : array-like The reponse or dependent variable. If a `pandas.Series` is given its name will be used in `ylabel` if `ylabel` is None. func : function Anything accepted by `pandas.DataFrame.aggregate`. This is applied to the response variable grouped by the trace levels. plottype : str {'line', 'scatter', 'both'}, optional The type of plot to return. Can be 'l', 's', or 'b' ax : axes, optional Matplotlib axes instance xlabel : str, optional Label to use for `x`. Default is 'X'. If `x` is a `pandas.Series` it will use the series names. ylabel : str, optional Label to use for `response`. Default is 'func of response'. If `response` is a `pandas.Series` it will use the series names. colors : list, optional If given, must have length == number of levels in trace. linestyles : list, optional If given, must have length == number of levels in trace. markers : list, optional If given, must have length == number of lovels in trace kwargs These will be passed to the plot command used either plot or scatter. If you want to control the overall plotting options, use kwargs. Returns ------- fig : Figure The figure given by `ax.figure` or a new instance. Examples -------- >>> import numpy as np >>> np.random.seed(12345) >>> weight = np.random.randint(1,4,size=60) >>> duration = np.random.randint(1,3,size=60) >>> days = np.log(np.random.randint(1,30, size=60)) >>> fig = interaction_plot(weight, duration, days, ... colors=['red','blue'], markers=['D','^'], ms=10) >>> import matplotlib.pyplot as plt >>> plt.show() .. plot:: import numpy as np from statsmodels.graphics.factorplots import interaction_plot np.random.seed(12345) weight = np.random.randint(1,4,size=60) duration = np.random.randint(1,3,size=60) days = np.log(np.random.randint(1,30, size=60)) fig = interaction_plot(weight, duration, days, colors=['red','blue'], markers=['D','^'], ms=10) import matplotlib.pyplot as plt #plt.show() """ from pandas import DataFrame fig, ax = utils.create_mpl_ax(ax) response_name = ylabel or getattr(response, 'name', 'response') ylabel = '%s of %s' % (get_function_name(func), response_name) xlabel = xlabel or getattr(x, 'name', 'X') legendtitle = legendtitle or getattr(trace, 'name', 'Trace') ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) x_values = x_levels = None if isinstance(x[0], str): x_levels = [l for l in np.unique(x)] x_values = lrange(len(x_levels)) x = _recode(x, dict(zip(x_levels, x_values))) data = DataFrame(dict(x=x, trace=trace, response=response)) plot_data = data.groupby(['trace', 'x']).aggregate(func).reset_index() # return data # check plot args n_trace = len(plot_data['trace'].unique()) linestyles = ['-'] * n_trace if linestyles is None else linestyles markers = ['.'] * n_trace if markers is None else markers colors = rainbow(n_trace) if colors is None else colors if len(linestyles) != n_trace: raise ValueError("Must be a linestyle for each trace level") if len(markers) != n_trace: raise ValueError("Must be a marker for each trace level") if len(colors) != n_trace: raise ValueError("Must be a color for each trace level") if plottype == 'both' or plottype == 'b': for i, (values, group) in enumerate(plot_data.groupby(['trace'])): # trace label label = str(group['trace'].values[0]) ax.plot(group['x'], group['response'], color=colors[i], marker=markers[i], label=label, linestyle=linestyles[i], **kwargs) elif plottype == 'line' or plottype == 'l': for i, (values, group) in enumerate(plot_data.groupby(['trace'])): # trace label label = str(group['trace'].values[0]) ax.plot(group['x'], group['response'], color=colors[i], label=label, linestyle=linestyles[i], **kwargs) elif plottype == 'scatter' or plottype == 's': for i, (values, group) in enumerate(plot_data.groupby(['trace'])): # trace label label = str(group['trace'].values[0]) ax.scatter(group['x'], group['response'], color=colors[i], label=label, marker=markers[i], **kwargs) else: raise ValueError("Plot type %s not understood" % plottype) ax.legend(loc=legendloc, title=legendtitle) ax.margins(.1) if all([x_levels, x_values]): ax.set_xticks(x_values) ax.set_xticklabels(x_levels) return fig
def _recode(x, levels): """ Recode categorial data to int factor. Parameters ---------- x : array-like array like object supporting with numpy array methods of categorially coded data. levels : dict mapping of labels to integer-codings Returns ------- out : instance numpy.ndarray """ from pandas import Series name = None if isinstance(x, Series): name = x.name x = x.values if x.dtype.type not in [np.str_, np.object_]: raise ValueError('This is not a categorial factor.' ' Array of str type required.') elif not isinstance(levels, dict): raise ValueError('This is not a valid value for levels.' ' Dict required.') elif not (np.unique(x) == np.unique(list(iterkeys(levels)))).all(): raise ValueError('The levels do not match the array values.') else: out = np.empty(x.shape[0], dtype=np.int) for level, coding in iteritems(levels): out[x == level] = coding if name: out = Series(out) out.name = name return out