Source code for statsmodels.graphics.tsaplots

"""Correlation plot functions."""


import numpy as np

from statsmodels.compat.pandas import sort_values
from statsmodels.graphics import utils
from statsmodels.tsa.stattools import acf, pacf


def _prepare_data_corr_plot(x, lags, zero):
    zero = bool(zero)
    irregular = False if zero else True
    if lags is None:
        lags = np.arange(not zero, len(x))
    elif np.isscalar(lags):
        lags = np.arange(not zero, int(lags) + 1)  # +1 for zero lag
    else:
        irregular = True
        lags = np.asanyarray(lags).astype(np.int)
    nlags = lags.max(0)

    return lags, nlags, irregular


def _plot_corr(ax, title, acf_x, confint, lags, irregular, use_vlines,
               vlines_kwargs, **kwargs):
    if irregular:
        acf_x = acf_x[lags]
        if confint is not None:
            confint = confint[lags]

    if use_vlines:
        ax.vlines(lags, [0], acf_x, **vlines_kwargs)
        ax.axhline(**kwargs)

    kwargs.setdefault('marker', 'o')
    kwargs.setdefault('markersize', 5)
    if 'ls' not in kwargs:
        # gh-2369
        kwargs.setdefault('linestyle', 'None')
    ax.margins(.05)
    ax.plot(lags, acf_x, **kwargs)
    ax.set_title(title)

    if confint is not None:
        if lags[0] == 0:
            lags = lags[1:]
            confint = confint[1:]
            acf_x = acf_x[1:]
        ax.fill_between(lags, confint[:, 0] - acf_x, confint[:, 1] - acf_x, alpha=.25)


[docs]def plot_acf(x, ax=None, lags=None, alpha=.05, use_vlines=True, unbiased=False, fft=False, title='Autocorrelation', zero=True, vlines_kwargs=None, **kwargs): """Plot the autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : int or array_like, optional int or Array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett's formula. If None, no confidence intervals are plotted. use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. unbiased : bool If True, then denominators for autocovariance are n-k, otherwise n fft : bool, optional If True, computes the ACF via FFT. title : str, optional Title to place on plot. Default is 'Autocorrelation' zero : bool, optional Flag indicating whether to include the 0-lag autocorrelation. Default is True. vlines_kwargs : dict, optional Optional dictionary of keyword arguments that are passed to vlines. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` kwargs is used to pass matplotlib optional arguments to both the line tracing the autocorrelations and for the horizontal line at 0. These options must be valid for a Line2D object. vlines_kwargs is used to pass additional optional arguments to the vertical lines connecting each autocorrelation to the axis. These options must be valid for a LineCollection object. """ fig, ax = utils.create_mpl_ax(ax) lags, nlags, irregular = _prepare_data_corr_plot(x, lags, zero) vlines_kwargs = {} if vlines_kwargs is None else vlines_kwargs confint = None # acf has different return type based on alpha if alpha is None: acf_x = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) else: acf_x, confint = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) _plot_corr(ax, title, acf_x, confint, lags, irregular, use_vlines, vlines_kwargs, **kwargs) return fig
[docs]def plot_pacf(x, ax=None, lags=None, alpha=.05, method='ywunbiased', use_vlines=True, title='Partial Autocorrelation', zero=True, vlines_kwargs=None, **kwargs): """ Plot the partial autocorrelation function Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : int or array_like, optional int or Array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided, ``lags=np.arange(len(corr))`` is used. alpha : float, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)) method : {'ywunbiased', 'ywmle', 'ols'} Specifies which method for the calculations to use: - yw or ywunbiased : yule walker with bias correction in denominator for acovf. Default. - ywm or ywmle : yule walker without bias correction - ols - regression of time series on lags of it and on constant - ld or ldunbiased : Levinson-Durbin recursion with bias correction - ldb or ldbiased : Levinson-Durbin recursion without bias correction use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. title : str, optional Title to place on plot. Default is 'Partial Autocorrelation' zero : bool, optional Flag indicating whether to include the 0-lag autocorrelation. Default is True. vlines_kwargs : dict, optional Optional dictionary of keyword arguments that are passed to vlines. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Plots lags on the horizontal and the correlations on vertical axis. Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` kwargs is used to pass matplotlib optional arguments to both the line tracing the autocorrelations and for the horizontal line at 0. These options must be valid for a Line2D object. vlines_kwargs is used to pass additional optional arguments to the vertical lines connecting each autocorrelation to the axis. These options must be valid for a LineCollection object. """ fig, ax = utils.create_mpl_ax(ax) vlines_kwargs = {} if vlines_kwargs is None else vlines_kwargs lags, nlags, irregular = _prepare_data_corr_plot(x, lags, zero) confint = None if alpha is None: acf_x = pacf(x, nlags=nlags, alpha=alpha, method=method) else: acf_x, confint = pacf(x, nlags=nlags, alpha=alpha, method=method) _plot_corr(ax, title, acf_x, confint, lags, irregular, use_vlines, vlines_kwargs, **kwargs) return fig
def seasonal_plot(grouped_x, xticklabels, ylabel=None, ax=None): """ Consider using one of month_plot or quarter_plot unless you need irregular plotting. Parameters ---------- grouped_x : iterable of DataFrames Should be a GroupBy object (or similar pair of group_names and groups as DataFrames) with a DatetimeIndex or PeriodIndex xticklabels : list of str List of season labels, one for each group. ylabel : str Lable for y axis ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. """ fig, ax = utils.create_mpl_ax(ax) start = 0 ticks = [] for season, df in grouped_x: df = df.copy() # or sort balks for series. may be better way df.sort_index() nobs = len(df) x_plot = np.arange(start, start + nobs) ticks.append(x_plot.mean()) ax.plot(x_plot, df.values, 'k') ax.hlines(df.values.mean(), x_plot[0], x_plot[-1], colors='r', linewidth=3) start += nobs ax.set_xticks(ticks) ax.set_xticklabels(xticklabels) ax.set_ylabel(ylabel) ax.margins(.1, .05) return fig
[docs]def month_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of monthly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.elnino.load_pandas().data >>> dta['YEAR'] = dta.YEAR.astype(int).astype(str) >>> dta = dta.set_index('YEAR').T.unstack() >>> dates = pd.to_datetime(list(map(lambda x : '-'.join(x) + '-1', ... dta.index.values))) >>> dta.index = pd.DatetimeIndex(dates, freq='MS') >>> fig = sm.graphics.tsa.month_plot(dta) .. plot:: plots/graphics_month_plot.py """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="M") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="M")) xticklabels = ['j','f','m','a','m','j','j','a','s','o','n','d'] return seasonal_plot(x.groupby(lambda y : y.month), xticklabels, ylabel=ylabel, ax=ax)
[docs]def quarter_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of quarterly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="Q") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="Q")) xticklabels = ['q1', 'q2', 'q3', 'q4'] return seasonal_plot(x.groupby(lambda y : y.quarter), xticklabels, ylabel=ylabel, ax=ax)