Source code for statsmodels.stats.moment_helpers

'''helper functions conversion between moments

contains:

* conversion between central and non-central moments, skew, kurtosis and
  cummulants
* cov2corr : convert covariance matrix to correlation matrix


Author: Josef Perktold
License: BSD-3

'''

from statsmodels.compat.python import range
import numpy as np
from scipy.misc import comb


## start moment helpers

[docs]def mc2mnc(mc): '''convert central to non-central moments, uses recursive formula optionally adjusts first moment to return mean ''' n = len(mc) mean = mc[0] mc = [1] + list(mc) # add zero moment = 1 mc[1] = 0 # define central mean as zero for formula mnc = [1, mean] # zero and first raw moments for nn,m in enumerate(mc[2:]): n=nn+2 mnc.append(0) for k in range(n+1): mnc[n] += comb(n,k,exact=1) * mc[k] * mean**(n-k) return mnc[1:]
[docs]def mnc2mc(mnc, wmean = True): '''convert non-central to central moments, uses recursive formula optionally adjusts first moment to return mean ''' n = len(mnc) mean = mnc[0] mnc = [1] + list(mnc) # add zero moment = 1 mu = [] #np.zeros(n+1) for n,m in enumerate(mnc): mu.append(0) #[comb(n-1,k,exact=1) for k in range(n)] for k in range(n+1): mu[n] += (-1)**(n-k) * comb(n,k,exact=1) * mnc[k] * mean**(n-k) if wmean: mu[1] = mean return mu[1:]
[docs]def cum2mc(kappa): '''convert non-central moments to cumulants recursive formula produces as many cumulants as moments References ---------- Kenneth Lange: Numerical Analysis for Statisticians, page 40 (http://books.google.ca/books?id=gm7kwttyRT0C&pg=PA40&lpg=PA40&dq=convert+cumulants+to+moments&source=web&ots=qyIaY6oaWH&sig=cShTDWl-YrWAzV7NlcMTRQV6y0A&hl=en&sa=X&oi=book_result&resnum=1&ct=result) ''' mc = [1,0.0] #_kappa[0]] #insert 0-moment and mean kappa0 = kappa[0] kappa = [1] + list(kappa) for nn,m in enumerate(kappa[2:]): n = nn+2 mc.append(0) for k in range(n-1): mc[n] += comb(n-1,k,exact=1) * kappa[n-k]*mc[k] mc[1] = kappa0 # insert mean as first moments by convention return mc[1:]
[docs]def mnc2cum(mnc): '''convert non-central moments to cumulants recursive formula produces as many cumulants as moments http://en.wikipedia.org/wiki/Cumulant#Cumulants_and_moments ''' mnc = [1] + list(mnc) kappa = [1] for nn,m in enumerate(mnc[1:]): n = nn+1 kappa.append(m) for k in range(1,n): kappa[n] -= comb(n-1,k-1,exact=1) * kappa[k]*mnc[n-k] return kappa[1:]
def mc2cum(mc): '''just chained because I have still the test case ''' return mnc2cum(mc2mnc(mc))
[docs]def mvsk2mc(args): '''convert mean, variance, skew, kurtosis to central moments''' mu,sig2,sk,kur = args cnt = [None]*4 cnt[0] = mu cnt[1] = sig2 cnt[2] = sk * sig2**1.5 cnt[3] = (kur+3.0) * sig2**2.0 return tuple(cnt)
[docs]def mvsk2mnc(args): '''convert mean, variance, skew, kurtosis to non-central moments''' mc, mc2, skew, kurt = args mnc = mc mnc2 = mc2 + mc*mc mc3 = skew*(mc2**1.5) # 3rd central moment mnc3 = mc3+3*mc*mc2+mc**3 # 3rd non-central moment mc4 = (kurt+3.0)*(mc2**2.0) # 4th central moment mnc4 = mc4+4*mc*mc3+6*mc*mc*mc2+mc**4 return (mnc, mnc2, mnc3, mnc4)
[docs]def mc2mvsk(args): '''convert central moments to mean, variance, skew, kurtosis ''' mc, mc2, mc3, mc4 = args skew = np.divide(mc3, mc2**1.5) kurt = np.divide(mc4, mc2**2.0) - 3.0 return (mc, mc2, skew, kurt)
[docs]def mnc2mvsk(args): '''convert central moments to mean, variance, skew, kurtosis ''' #convert four non-central moments to central moments mnc, mnc2, mnc3, mnc4 = args mc = mnc mc2 = mnc2 - mnc*mnc mc3 = mnc3 - (3*mc*mc2+mc**3) # 3rd central moment mc4 = mnc4 - (4*mc*mc3+6*mc*mc*mc2+mc**4) return mc2mvsk((mc, mc2, mc3, mc4))
#def mnc2mc(args): # '''convert four non-central moments to central moments # ''' # mnc, mnc2, mnc3, mnc4 = args # mc = mnc # mc2 = mnc2 - mnc*mnc # mc3 = mnc3 - (3*mc*mc2+mc**3) # 3rd central moment # mc4 = mnc4 - (4*mc*mc3+6*mc*mc*mc2+mc**4) # return mc, mc2, mc #TODO: no return, did it get lost in cut-paste?
[docs]def cov2corr(cov, return_std=False): '''convert covariance matrix to correlation matrix Parameters ---------- cov : array_like, 2d covariance matrix, see Notes Returns ------- corr : ndarray (subclass) correlation matrix return_std : bool If this is true then the standard deviation is also returned. By default only the correlation matrix is returned. Notes ----- This function does not convert subclasses of ndarrays. This requires that division is defined elementwise. np.ma.array and np.matrix are allowed. ''' cov = np.asanyarray(cov) std_ = np.sqrt(np.diag(cov)) corr = cov / np.outer(std_, std_) if return_std: return corr, std_ else: return corr
[docs]def corr2cov(corr, std): '''convert correlation matrix to covariance matrix given standard deviation Parameters ---------- corr : array_like, 2d correlation matrix, see Notes std : array_like, 1d standard deviation Returns ------- cov : ndarray (subclass) covariance matrix Notes ----- This function does not convert subclasses of ndarrays. This requires that multiplication is defined elementwise. np.ma.array are allowed, but not matrices. ''' corr = np.asanyarray(corr) std_ = np.asanyarray(std) cov = corr * np.outer(std_, std_) return cov
[docs]def se_cov(cov): '''get standard deviation from covariance matrix just a shorthand function np.sqrt(np.diag(cov)) Parameters ---------- cov : array_like, square covariance matrix Returns ------- std : ndarray standard deviation from diagonal of cov ''' return np.sqrt(np.diag(cov))