Robust Linear Models

In [1]:
%matplotlib inline

from __future__ import print_function
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.sandbox.regression.predstd import wls_prediction_std

Estimation

Load data:

In [2]:
data = sm.datasets.stackloss.load()
data.exog = sm.add_constant(data.exog)

Huber's T norm with the (default) median absolute deviation scaling

In [3]:
huber_t = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT())
hub_results = huber_t.fit()
print(hub_results.params)
print(hub_results.bse)
print(hub_results.summary(yname='y',
            xname=['var_%d' % i for i in range(len(hub_results.params))]))
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.79189854 0.11100521 0.30293016 0.12864961]
                    Robust linear Model Regression Results                    
==============================================================================
Dep. Variable:                      y   No. Observations:                   21
Model:                            RLM   Df Residuals:                       17
Method:                          IRLS   Df Model:                            3
Norm:                          HuberT                                         
Scale Est.:                       mad                                         
Cov Type:                          H1                                         
Date:                Mon, 14 May 2018                                         
Time:                        21:44:56                                         
No. Iterations:                    19                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
var_0        -41.0265      9.792     -4.190      0.000     -60.218     -21.835
var_1          0.8294      0.111      7.472      0.000       0.612       1.047
var_2          0.9261      0.303      3.057      0.002       0.332       1.520
var_3         -0.1278      0.129     -0.994      0.320      -0.380       0.124
==============================================================================

If the model instance has been used for another fit with different fit
parameters, then the fit options might not be the correct ones anymore .

Huber's T norm with 'H2' covariance matrix

In [4]:
hub_results2 = huber_t.fit(cov="H2")
print(hub_results2.params)
print(hub_results2.bse)
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.08950419 0.11945975 0.32235497 0.11796313]

Andrew's Wave norm with Huber's Proposal 2 scaling and 'H3' covariance matrix

In [5]:
andrew_mod = sm.RLM(data.endog, data.exog, M=sm.robust.norms.AndrewWave())
andrew_results = andrew_mod.fit(scale_est=sm.robust.scale.HuberScale(), cov="H3")
print('Parameters: ', andrew_results.params)
Parameters:  [-40.8817957    0.79276138   1.04857556  -0.13360865]

See help(sm.RLM.fit) for more options and module sm.robust.scale for scale options

Comparing OLS and RLM

Artificial data with outliers:

In [6]:
nsample = 50
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, (x1-5)**2))
X = sm.add_constant(X)
sig = 0.3   # smaller error variance makes OLS<->RLM contrast bigger
beta = [5, 0.5, -0.0]
y_true2 = np.dot(X, beta)
y2 = y_true2 + sig*1. * np.random.normal(size=nsample)
y2[[39,41,43,45,48]] -= 5   # add some outliers (10% of nsample)

Example 1: quadratic function with linear truth

Note that the quadratic term in OLS regression will capture outlier effects.

In [7]:
res = sm.OLS(y2, X).fit()
print(res.params)
print(res.bse)
print(res.predict())
[ 5.14089837  0.51512862 -0.01220956]
[0.4527239  0.06989446 0.00618458]
[ 4.83565943  5.09371686  5.34770613  5.59762725  5.84348021  6.08526501
  6.32298165  6.55663014  6.78621047  7.01172264  7.23316665  7.45054251
  7.6638502   7.87308974  8.07826113  8.27936435  8.47639942  8.66936633
  8.85826509  9.04309568  9.22385812  9.4005524   9.57317853  9.74173649
  9.9062263  10.06664795 10.22300144 10.37528678 10.52350396 10.66765298
 10.80773384 10.94374655 11.0756911  11.20356749 11.32737572 11.4471158
 11.56278772 11.67439148 11.78192708 11.88539453 11.98479381 12.08012495
 12.17138792 12.25858274 12.34170939 12.4207679  12.49575824 12.56668042
 12.63353445 12.69632032]

Estimate RLM:

In [8]:
resrlm = sm.RLM(y2, X).fit()
print(resrlm.params)
print(resrlm.bse)
[ 5.08557977e+00  4.99250913e-01 -2.31002828e-03]
[0.14231557 0.0219716  0.00194415]

Draw a plot to compare OLS estimates to the robust estimates:

In [9]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(x1, y2, 'o',label="data")
ax.plot(x1, y_true2, 'b-', label="True")
prstd, iv_l, iv_u = wls_prediction_std(res)
ax.plot(x1, res.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm.fittedvalues, 'g.-', label="RLM")
ax.legend(loc="best")
Out[9]:
<matplotlib.legend.Legend at 0x115cbae48>

Example 2: linear function with linear truth

Fit a new OLS model using only the linear term and the constant:

In [10]:
X2 = X[:,[0,1]] 
res2 = sm.OLS(y2, X2).fit()
print(res2.params)
print(res2.bse)
[5.6330183  0.39303304]
[0.38915455 0.03353113]

Estimate RLM:

In [11]:
resrlm2 = sm.RLM(y2, X2).fit()
print(resrlm2.params)
print(resrlm2.bse)
[5.14977947 0.48062536]
[0.11092148 0.00955744]

Draw a plot to compare OLS estimates to the robust estimates:

In [12]:
prstd, iv_l, iv_u = wls_prediction_std(res2)

fig, ax = plt.subplots(figsize=(8,6))
ax.plot(x1, y2, 'o', label="data")
ax.plot(x1, y_true2, 'b-', label="True")
ax.plot(x1, res2.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm2.fittedvalues, 'g.-', label="RLM")
legend = ax.legend(loc="best")