statsmodels.discrete.discrete_model.BinaryResults.conf_int¶
-
BinaryResults.
conf_int
(alpha=0.05, cols=None, method='default')¶ Returns the confidence interval of the fitted parameters.
Parameters: - alpha (float, optional) – The significance level for the confidence interval. ie., The default alpha = .05 returns a 95% confidence interval.
- cols (array-like, optional) – cols specifies which confidence intervals to return
- method (string) – Not Implemented Yet Method to estimate the confidence_interval. “Default” : uses self.bse which is based on inverse Hessian for MLE “hjjh” : “jac” : “boot-bse” “boot_quant” “profile”
Returns: conf_int – Each row contains [lower, upper] limits of the confidence interval for the corresponding parameter. The first column contains all lower, the second column contains all upper limits.
Return type: array
Examples
>>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> results.conf_int() array([[-5496529.48322745, -1467987.78596704], [ -177.02903529, 207.15277984], [ -0.1115811 , 0.03994274], [ -3.12506664, -0.91539297], [ -1.5179487 , -0.54850503], [ -0.56251721, 0.460309 ], [ 798.7875153 , 2859.51541392]])
>>> results.conf_int(cols=(2,3)) array([[-0.1115811 , 0.03994274], [-3.12506664, -0.91539297]])
Notes
The confidence interval is based on the standard normal distribution. Models wish to use a different distribution should overwrite this method.