statsmodels.discrete.discrete_model.Logit.hessian¶
-
Logit.
hessian
(params)[source]¶ Logit model Hessian matrix of the log-likelihood
Parameters: params (array-like) – The parameters of the model Returns: hess – The Hessian, second derivative of loglikelihood function, evaluated at params Return type: ndarray, (k_vars, k_vars) Notes
\[\frac{\partial^{2}\ln L}{\partial\beta\partial\beta^{\prime}}=-\sum_{i}\Lambda_{i}\left(1-\Lambda_{i}\right)x_{i}x_{i}^{\prime}\]