statsmodels.genmod.generalized_estimating_equations.GEEResults¶
-
class
statsmodels.genmod.generalized_estimating_equations.
GEEResults
(model, params, cov_params, scale, cov_type='robust', use_t=False, **kwds)[source]¶ This class summarizes the fit of a marginal regression model using GEE.
Returns: - **Attributes**
- cov_params_default (ndarray) – default covariance of the parameter estimates. Is chosen among one of the following three based on cov_type
- cov_robust (ndarray) – covariance of the parameter estimates that is robust
- cov_naive (ndarray) – covariance of the parameter estimates that is not robust to correlation or variance misspecification
- cov_robust_bc (ndarray) – covariance of the parameter estimates that is robust and bias reduced
- converged (bool) – indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold
- cov_type (string) – string indicating whether a “robust”, “naive” or “bias_reduced” covariance is used as default
- fit_history (dict) – Contains information about the iterations.
- fittedvalues (array) – Linear predicted values for the fitted model. dot(exog, params)
- model (class instance) – Pointer to GEE model instance that called fit.
- normalized_cov_params (array) – See GEE docstring
- params (array) – The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data.
- scale (float) – The estimate of the scale / dispersion for the model fit. See GEE.fit for more information.
- score_norm (float) – norm of the score at the end of the iterative estimation.
- bse (array) – The standard errors of the fitted GEE parameters.
Methods
bse
()centered_resid
()Returns the residuals centered within each group. conf_int
([alpha, cols, cov_type])Returns confidence intervals for the fitted parameters. cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix. f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()Returns the fitted values from the model. get_margeff
([at, method, atexog, dummy, count])Get marginal effects of the fitted model. initialize
(model, params, **kwd)llf
()load
(fname)load a pickle, (class method) normalized_cov_params
()params_sensitivity
(dep_params_first, …)Refits the GEE model using a sequence of values for the dependence parameters. plot_added_variable
(focus_exog[, …])Create an added variable plot for a fitted regression model. plot_ceres_residuals
(focus_exog[, frac, …])Produces a CERES (Conditional Expectation Partial Residuals) plot for a fitted regression model. plot_isotropic_dependence
([ax, xpoints, min_n])Create a plot of the pairwise products of within-group residuals against the corresponding time differences. plot_partial_residuals
(focus_exog[, ax])Create a partial residual, or ‘component plus residual’ plot for a fited regression model. predict
([exog, transform])Call self.model.predict with self.params as the first argument. pvalues
()remove_data
()remove data arrays, all nobs arrays from result and model resid
()Returns the residuals, the endogeneous data minus the fitted values from the model. resid_anscombe
()resid_centered
()Returns the residuals centered within each group. resid_centered_split
()Returns the residuals centered within each group. resid_deviance
()resid_pearson
()resid_response
()resid_split
()Returns the residuals, the endogeneous data minus the fitted values from the model. resid_working
()save
(fname[, remove_data])save a pickle of this instance sensitivity_params
(dep_params_first, …)Refits the GEE model using a sequence of values for the dependence parameters. split_centered_resid
()Returns the residuals centered within each group. split_resid
()Returns the residuals, the endogeneous data minus the fitted values from the model. standard_errors
([cov_type])This is a convenience function that returns the standard errors for any covariance type. summary
([yname, xname, title, alpha])Summarize the GEE regression results t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values tvalues
()Return the t-statistic for a given parameter estimate. wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns Attributes
use_t