statsmodels.nonparametric.kernel_density.KDEMultivariate.cdf¶
-
KDEMultivariate.
cdf
(data_predict=None)[source]¶ Evaluate the cumulative distribution function.
Parameters: data_predict (array_like, optional) – Points to evaluate at. If unspecified, the training data is used. Returns: cdf_est – The estimate of the cdf. Return type: array_like Notes
See http://en.wikipedia.org/wiki/Cumulative_distribution_function For more details on the estimation see Ref. [5] in module docstring.
The multivariate CDF for mixed data (continuous and ordered/unordered discrete) is estimated by:
\[F(x^{c},x^{d})=n^{-1}\sum_{i=1}^{n}\left[G(\frac{x^{c}-X_{i}}{h})\sum_{u\leq x^{d}}L(X_{i}^{d},x_{i}^{d}, \lambda)\right]\]where G() is the product kernel CDF estimator for the continuous and L() for the discrete variables.
Used bandwidth is
self.bw
.