statsmodels.nonparametric.kernel_regression.KernelReg¶
-
class
statsmodels.nonparametric.kernel_regression.
KernelReg
(endog, exog, var_type, reg_type='ll', bw='cv_ls', defaults=<statsmodels.nonparametric._kernel_base.EstimatorSettings object>)[source]¶ Nonparametric kernel regression class.
Calculates the conditional mean
E[y|X]
wherey = g(X) + e
. Note that the “local constant” type of regression provided here is also known as Nadaraya-Watson kernel regression; “local linear” is an extension of that which suffers less from bias issues at the edge of the support.Parameters: - endog (list with one element which is array_like) – This is the dependent variable.
- exog (list) – The training data for the independent variable(s) Each element in the list is a separate variable
- var_type (str) –
The type of the variables, one character per variable:
- c: continuous
- u: unordered (discrete)
- o: ordered (discrete)
- reg_type ({'lc', 'll'}, optional) – Type of regression estimator. ‘lc’ means local constant and ‘ll’ local Linear estimator. Default is ‘ll’
- bw (str or array_like, optional) – Either a user-specified bandwidth or the method for bandwidth selection. If a string, valid values are ‘cv_ls’ (least-squares cross-validation) and ‘aic’ (AIC Hurvich bandwidth estimation). Default is ‘cv_ls’.
- defaults (EstimatorSettings instance, optional) – The default values for the efficient bandwidth estimation.
-
bw
¶ array_like – The bandwidth parameters.
Methods
aic_hurvich
(bw[, func])Computes the AIC Hurvich criteria for the estimation of the bandwidth. cv_loo
(bw, func)The cross-validation function with leave-one-out estimator. fit
([data_predict])Returns the mean and marginal effects at the data_predict points. loo_likelihood
()r_squared
()Returns the R-Squared for the nonparametric regression. sig_test
(var_pos[, nboot, nested_res, pivot])Significance test for the variables in the regression.