statsmodels.regression.linear_model.WLS.from_formula¶
-
classmethod
WLS.
from_formula
(formula, data, subset=None, drop_cols=None, *args, **kwargs)¶ Create a Model from a formula and dataframe.
Parameters: - formula (str or generic Formula object) – The formula specifying the model
- data (array-like) – The data for the model. See Notes.
- subset (array-like) – An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.DataFrame
- drop_cols (array-like) – Columns to drop from the design matrix. Cannot be used to drop terms involving categoricals.
- args (extra arguments) – These are passed to the model
- kwargs (extra keyword arguments) – These are passed to the model with one exception. The
eval_env
keyword is passed to patsy. It can be either apatsy.EvalEnvironment
object or an integer indicating the depth of the namespace to use. For example, the defaulteval_env=0
uses the calling namespace. If you wish to use a “clean” environment seteval_env=-1
.
Returns: model
Return type: Model instance
Notes
data must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame.