statsmodels.regression.mixed_linear_model.MixedLMResults¶
-
class
statsmodels.regression.mixed_linear_model.
MixedLMResults
(model, params, cov_params)[source]¶ Class to contain results of fitting a linear mixed effects model.
MixedLMResults inherits from statsmodels.LikelihoodModelResults
Parameters: statsmodels.LikelihoodModelResults (See) – Returns: - **Attributes**
- model (class instance) – Pointer to MixedLM model instance that called fit.
- normalized_cov_params (array) – The sampling covariance matrix of the estimates
- fe_params (array) – The fitted fixed-effects coefficients
- cov_re (array) – The fitted random-effects covariance matrix
- bse_fe (array) – The standard errors of the fitted fixed effects coefficients
- bse_re (array) – The standard errors of the fitted random effects covariance matrix and variance components. The first k_re * (k_re + 1) parameters are the standard errors for the lower triangle of cov_re, the remaining elements are the standard errors for the variance components.
See also
statsmodels.LikelihoodModelResults
Methods
aic
()bic
()bootstrap
([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator bse
()bse_fe
()Returns the standard errors of the fixed effect regression coefficients. bse_re
()Returns the standard errors of the variance parameters. bsejac
()standard deviation of parameter estimates based on covjac bsejhj
()standard deviation of parameter estimates based on covHJH conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix. covjac
()covariance of parameters based on outer product of jacobian of log-likelihood covjhj
()covariance of parameters based on HJJH df_modelwc
()f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()Returns the fitted values for the model. get_nlfun
(fun)hessv
()cached Hessian of log-likelihood initialize
(model, params, **kwd)llf
()load
(fname)load a pickle, (class method) normalized_cov_params
()predict
([exog, transform])Call self.model.predict with self.params as the first argument. profile_re
(re_ix, vtype[, num_low, …])Profile-likelihood inference for variance parameters. pvalues
()random_effects
()The conditional means of random effects given the data. random_effects_cov
()Returns the conditional covariance matrix of the random effects for each group given the data. remove_data
()remove data arrays, all nobs arrays from result and model resid
()Returns the residuals for the model. save
(fname[, remove_data])save a pickle of this instance score_obsv
()cached Jacobian of log-likelihood summary
([yname, xname_fe, xname_re, title, …])Summarize the mixed model regression results. t_test
(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values tvalues
()Return the t-statistic for a given parameter estimate. wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns Attributes
use_t