statsmodels.robust.norms.estimate_location¶
-
statsmodels.robust.norms.
estimate_location
(a, scale, norm=None, axis=0, initial=None, maxiter=30, tol=1e-06)[source]¶ M-estimator of location using self.norm and a current estimator of scale.
This iteratively finds a solution to
norm.psi((a-mu)/scale).sum() == 0
Parameters: - a (array) – Array over which the location parameter is to be estimated
- scale (array) – Scale parameter to be used in M-estimator
- norm (RobustNorm, optional) – Robust norm used in the M-estimator. The default is HuberT().
- axis (int, optional) – Axis along which to estimate the location parameter. The default is 0.
- initial (array, optional) – Initial condition for the location parameter. Default is None, which uses the median of a.
- niter (int, optional) – Maximum number of iterations. The default is 30.
- tol (float, optional) – Toleration for convergence. The default is 1e-06.
Returns: mu – Estimate of location
Return type: array