statsmodels.sandbox.regression.gmm.NonlinearIVGMM.fititer¶
-
NonlinearIVGMM.
fititer
(start, maxiter=2, start_invweights=None, weights_method='cov', wargs=(), optim_method='bfgs', optim_args=None)¶ iterative estimation with updating of optimal weighting matrix
stopping criteria are maxiter or change in parameter estimate less than self.epsilon_iter, with default 1e-6.
Parameters: - start (array) – starting value for parameters
- maxiter (int) – maximum number of iterations
- start_weights (array (nmoms, nmoms)) – initial weighting matrix; if None, then the identity matrix is used
- weights_method ({'cov', ..}) – method to use to estimate the optimal weighting matrix, see calc_weightmatrix for details
Returns: - params (array) – estimated parameters
- weights (array) – optimal weighting matrix calculated with final parameter estimates
Notes