statsmodels.stats.anova.anova_lm¶
-
statsmodels.stats.anova.
anova_lm
(*args, **kwargs)[source]¶ Anova table for one or more fitted linear models.
Parameters: - args (fitted linear model results instance) – One or more fitted linear models
- scale (float) – Estimate of variance, If None, will be estimated from the largest model. Default is None.
- test (str {"F", "Chisq", "Cp"} or None) – Test statistics to provide. Default is “F”.
- typ (str or int {"I","II","III"} or {1,2,3}) – The type of Anova test to perform. See notes.
- robust ({None, "hc0", "hc1", "hc2", "hc3"}) – Use heteroscedasticity-corrected coefficient covariance matrix. If robust covariance is desired, it is recommended to use hc3.
Returns: - anova (DataFrame)
- A DataFrame containing.
Notes
Model statistics are given in the order of args. Models must have been fit using the formula api.
See also
model_results.compare_f_test
,model_results.compare_lm_test
Examples
>>> import statsmodels.api as sm >>> from statsmodels.formula.api import ols >>> moore = sm.datasets.get_rdataset("Moore", "car", cache=True) # load >>> data = moore.data >>> data = data.rename(columns={"partner.status" : ... "partner_status"}) # make name pythonic >>> moore_lm = ols('conformity ~ C(fcategory, Sum)*C(partner_status, Sum)', ... data=data).fit() >>> table = sm.stats.anova_lm(moore_lm, typ=2) # Type 2 Anova DataFrame >>> print(table)