statsmodels.stats.gof.powerdiscrepancy¶
-
statsmodels.stats.gof.
powerdiscrepancy
(observed, expected, lambd=0.0, axis=0, ddof=0)[source]¶ Calculates power discrepancy, a class of goodness-of-fit tests as a measure of discrepancy between observed and expected data.
This contains several goodness-of-fit tests as special cases, see the describtion of lambd, the exponent of the power discrepancy. The pvalue is based on the asymptotic chi-square distribution of the test statistic.
freeman_tukey: D(x| heta) = sum_j (sqrt{x_j} - sqrt{e_j})^2
Parameters: - o (Iterable) – Observed values
- e (Iterable) – Expected values
- lambd (float or string) –
- float : exponent a for power discrepancy
- ’loglikeratio’: a = 0
- ’freeman_tukey’: a = -0.5
- ’pearson’: a = 1 (standard chisquare test statistic)
- ’modified_loglikeratio’: a = -1
- ’cressie_read’: a = 2/3
- ’neyman’ : a = -2 (Neyman-modified chisquare, reference from a book?)
- axis (int) – axis for observations of one series
- ddof (int) – degrees of freedom correction,
Returns: - D_obs (Discrepancy of observed values)
- pvalue (pvalue)
References
- Cressie, Noel and Timothy R. C. Read, Multinomial Goodness-of-Fit Tests,
- Journal of the Royal Statistical Society. Series B (Methodological), Vol. 46, No. 3 (1984), pp. 440-464
- Campbell B. Read: Freeman-Tukey chi-squared goodness-of-fit statistics,
- Statistics & Probability Letters 18 (1993) 271-278
- Nobuhiro Taneichi, Yuri Sekiya, Akio Suzukawa, Asymptotic Approximations
- for the Distributions of the Multinomial Goodness-of-Fit Statistics under Local Alternatives, Journal of Multivariate Analysis 81, 335?359 (2002)
- Steele, M. 1,2, C. Hurst 3 and J. Chaseling, Simulated Power of Discrete
- Goodness-of-Fit Tests for Likert Type Data
Examples
>>> observed = np.array([ 2., 4., 2., 1., 1.]) >>> expected = np.array([ 0.2, 0.2, 0.2, 0.2, 0.2])
for checking correct dimension with multiple series
>>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd='freeman_tukey',axis=1) (array([[ 2.745166, 2.745166]]), array([[ 0.6013346, 0.6013346]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected,axis=1) (array([[ 2.77258872, 2.77258872]]), array([[ 0.59657359, 0.59657359]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=0,axis=1) (array([[ 2.77258872, 2.77258872]]), array([[ 0.59657359, 0.59657359]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=1,axis=1) (array([[ 3., 3.]]), array([[ 0.5578254, 0.5578254]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, 10*expected, lambd=2/3.0,axis=1) (array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]])) >>> powerdiscrepancy(np.column_stack((observed,observed)).T, expected, lambd=2/3.0,axis=1) (array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]])) >>> powerdiscrepancy(np.column_stack((observed,observed)), expected, lambd=2/3.0, axis=0) (array([[ 2.89714546, 2.89714546]]), array([[ 0.57518277, 0.57518277]]))
each random variable can have different total count/sum
>>> powerdiscrepancy(np.column_stack((observed,2*observed)), expected, lambd=2/3.0, axis=0) (array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((observed,2*observed)), expected, lambd=2/3.0, axis=0) (array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((2*observed,2*observed)), expected, lambd=2/3.0, axis=0) (array([[ 5.79429093, 5.79429093]]), array([[ 0.21504648, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((2*observed,2*observed)), 20*expected, lambd=2/3.0, axis=0) (array([[ 5.79429093, 5.79429093]]), array([[ 0.21504648, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((observed,2*observed)), np.column_stack((10*expected,20*expected)), lambd=2/3.0, axis=0) (array([[ 2.89714546, 5.79429093]]), array([[ 0.57518277, 0.21504648]])) >>> powerdiscrepancy(np.column_stack((observed,2*observed)), np.column_stack((10*expected,20*expected)), lambd=-1, axis=0) (array([[ 2.77258872, 5.54517744]]), array([[ 0.59657359, 0.2357868 ]]))