statsmodels.stats.weightstats.DescrStatsW.ztost_mean

DescrStatsW.ztost_mean(low, upp)[source]

test of (non-)equivalence of one sample, based on z-test

TOST: two one-sided z-tests

null hypothesis: m < low or m > upp alternative hypothesis: low < m < upp

where m is the expected value of the sample (mean of the population).

If the pvalue is smaller than a threshold, say 0.05, then we reject the hypothesis that the expected value of the sample (mean of the population) is outside of the interval given by thresholds low and upp.

Parameters:upp (low,) – equivalence interval low < mean < upp
Returns:
  • pvalue (float) – pvalue of the non-equivalence test
  • t1, pv1 (tuple) – test statistic and p-value for lower threshold test
  • t2, pv2 (tuple) – test statistic and p-value for upper threshold test