statsmodels.tools.eval_measures.aicc_sigma¶
-
statsmodels.tools.eval_measures.
aicc_sigma
(sigma2, nobs, df_modelwc, islog=False)[source]¶ Akaike information criterion (AIC) with small sample correction
Parameters: - sigma2 (float) – estimate of the residual variance or determinant of Sigma_hat in the multivariate case. If islog is true, then it is assumed that sigma is already log-ed, for example logdetSigma.
- nobs (int) – number of observations
- df_modelwc (int) – number of parameters including constant
Returns: aicc – information criterion
Return type: float
Notes
A constant has been dropped in comparison to the loglikelihood base information criteria. These should be used to compare for comparable models.
References
http://en.wikipedia.org/wiki/Akaike_information_criterion#AICc