statsmodels.tsa.holtwinters.Holt.fit¶
-
Holt.
fit
(smoothing_level=None, smoothing_slope=None, damping_slope=None, optimized=True)[source]¶ fit Holt’s Exponential Smoothing wrapper(…)
Parameters: - smoothing_level (float, optional) – The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value.
- smoothing_slope (float, optional) – The beta value of the holts trend method, if the value is set then this value will be used as the value.
- damping_slope (float, optional) – The phi value of the damped method, if the value is set then this value will be used as the value.
- optimized (bool, optional) – Should the values that have not been set above be optimized automatically?
Returns: results – See statsmodels.tsa.holtwinters.HoltWintersResults
Return type: HoltWintersResults class
Notes
This is a full implementation of the holts exponential smoothing as per [1].
References
[1] Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2014.