statsmodels.tsa.statespace.mlemodel.MLEResults¶
-
class
statsmodels.tsa.statespace.mlemodel.
MLEResults
(model, params, results, cov_type='opg', cov_kwds=None, **kwargs)[source]¶ Class to hold results from fitting a state space model.
Parameters: - model (MLEModel instance) – The fitted model instance
- params (array) – Fitted parameters
- filter_results (KalmanFilter instance) – The underlying state space model and Kalman filter output
-
model
¶ Model instance – A reference to the model that was fit.
-
filter_results
¶ KalmanFilter instance – The underlying state space model and Kalman filter output
-
nobs
¶ float – The number of observations used to fit the model.
-
params
¶ array – The parameters of the model.
-
scale
¶ float – This is currently set to 1.0 and not used by the model or its results.
See also
MLEModel
,statsmodels.tsa.statespace.kalman_filter.FilterResults
,statsmodels.tsa.statespace.representation.FrozenRepresentation
Methods
aic
()(float) Akaike Information Criterion bic
()(float) Bayes Information Criterion bse
()conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix. cov_params_approx
()(array) The variance / covariance matrix. cov_params_oim
()(array) The variance / covariance matrix. cov_params_opg
()(array) The variance / covariance matrix. cov_params_robust
()(array) The QMLE variance / covariance matrix. cov_params_robust_approx
()(array) The QMLE variance / covariance matrix. cov_params_robust_oim
()(array) The QMLE variance / covariance matrix. f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()(array) The predicted values of the model. forecast
([steps])Out-of-sample forecasts get_forecast
([steps])Out-of-sample forecasts get_prediction
([start, end, dynamic, index])In-sample prediction and out-of-sample forecasting hqic
()(float) Hannan-Quinn Information Criterion impulse_responses
([steps, impulse, …])Impulse response function info_criteria
(criteria[, method])Information criteria initialize
(model, params, **kwd)llf
()(float) The value of the log-likelihood function evaluated at params. llf_obs
()(float) The value of the log-likelihood function evaluated at params. load
(fname)load a pickle, (class method) loglikelihood_burn
()(float) The number of observations during which the likelihood is not evaluated. normalized_cov_params
()plot_diagnostics
([variable, lags, fig, figsize])Diagnostic plots for standardized residuals of one endogenous variable predict
([start, end, dynamic])In-sample prediction and out-of-sample forecasting pvalues
()(array) The p-values associated with the z-statistics of the coefficients. remove_data
()remove data arrays, all nobs arrays from result and model resid
()(array) The model residuals. save
(fname[, remove_data])save a pickle of this instance simulate
(nsimulations[, measurement_shocks, …])Simulate a new time series following the state space model summary
([alpha, start, title, model_name, …])Summarize the Model t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values test_heteroskedasticity
(method[, …])Test for heteroskedasticity of standardized residuals test_normality
(method)Test for normality of standardized residuals. test_serial_correlation
(method[, lags])Ljung-box test for no serial correlation of standardized residuals tvalues
()Return the t-statistic for a given parameter estimate. wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis. wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns zvalues
()(array) The z-statistics for the coefficients. Attributes
use_t