statsmodels.tsa.tsatools.lagmat¶
-
statsmodels.tsa.tsatools.
lagmat
(x, maxlag, trim='forward', original='ex', use_pandas=False)[source]¶ Create 2d array of lags
Parameters: - x (array_like, 1d or 2d) – data; if 2d, observation in rows and variables in columns
- maxlag (int) – all lags from zero to maxlag are included
- trim (str {'forward', 'backward', 'both', 'none'} or None) –
- ‘forward’ : trim invalid observations in front
- ’backward’ : trim invalid initial observations
- ’both’ : trim invalid observations on both sides
- ’none’, None : no trimming of observations
- original (str {'ex','sep','in'}) –
- ‘ex’ : drops the original array returning only the lagged values.
- ’in’ : returns the original array and the lagged values as a single array.
- ’sep’ : returns a tuple (original array, lagged values). The original
- array is truncated to have the same number of rows as the returned lagmat.
- use_pandas (bool, optional) – If true, returns a DataFrame when the input is a pandas Series or DataFrame. If false, return numpy ndarrays.
Returns: - lagmat (2d array) – array with lagged observations
- y (2d array, optional) – Only returned if original == ‘sep’
Examples
>>> from statsmodels.tsa.tsatools import lagmat >>> import numpy as np >>> X = np.arange(1,7).reshape(-1,2) >>> lagmat(X, maxlag=2, trim="forward", original='in') array([[ 1., 2., 0., 0., 0., 0.], [ 3., 4., 1., 2., 0., 0.], [ 5., 6., 3., 4., 1., 2.]])
>>> lagmat(X, maxlag=2, trim="backward", original='in') array([[ 5., 6., 3., 4., 1., 2.], [ 0., 0., 5., 6., 3., 4.], [ 0., 0., 0., 0., 5., 6.]])
>>> lagmat(X, maxlag=2, trim="both", original='in') array([[ 5., 6., 3., 4., 1., 2.]])
>>> lagmat(X, maxlag=2, trim="none", original='in') array([[ 1., 2., 0., 0., 0., 0.], [ 3., 4., 1., 2., 0., 0.], [ 5., 6., 3., 4., 1., 2.], [ 0., 0., 5., 6., 3., 4.], [ 0., 0., 0., 0., 5., 6.]])
Notes
When using a pandas DataFrame or Series with use_pandas=True, trim can only be ‘forward’ or ‘both’ since it is not possible to consistently extend index values.