statsmodels.tsa.vector_ar.var_model.VARResults¶
-
class
statsmodels.tsa.vector_ar.var_model.
VARResults
(endog, endog_lagged, params, sigma_u, lag_order, model=None, trend='c', names=None, dates=None, exog=None)[source]¶ Estimate VAR(p) process with fixed number of lags
Parameters: - endog (array) –
- endog_lagged (array) –
- params (array) –
- sigma_u (array) –
- lag_order (int) –
- model (VAR model instance) –
- trend (str {'nc', 'c', 'ct'}) –
- names (array-like) – List of names of the endogenous variables in order of appearance in endog.
- dates –
- exog (array) –
Returns: - **Attributes**
- aic
- bic
- bse
- coefs (ndarray (p x K x K)) – Estimated A_i matrices, A_i = coefs[i-1]
- cov_params
- dates
- detomega
- df_model (int)
- df_resid (int)
- endog
- endog_lagged
- fittedvalues
- fpe
- intercept
- info_criteria
- k_ar (int)
- k_trend (int)
- llf
- model
- names
- neqs (int) – Number of variables (equations)
- nobs (int)
- n_totobs (int)
- params
- k_ar (int) – Order of VAR process
- params (ndarray (Kp + 1) x K) – A_i matrices and intercept in stacked form [int A_1 … A_p]
- pvalues
- names (list) – variables names
- resid
- roots (array) – The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 … - coefs[p-1]*z**k_ar) = 0. Note that the inverse roots are returned, and stability requires that the roots lie outside the unit circle.
- sigma_u (ndarray (K x K)) – Estimate of white noise process variance Var[u_t]
- sigma_u_mle
- stderr
- trenorder
- tvalues
- y
- ys_lagged
Methods
acf
([nlags])Compute theoretical autocovariance function acorr
([nlags])Compute theoretical autocorrelation function bse
()Standard errors of coefficients, reshaped to match in size cov_params
()Estimated variance-covariance of model coefficients cov_ybar
()Asymptotically consistent estimate of covariance of the sample mean detomega
()Return determinant of white noise covariance with degrees of freedom correction: fevd
([periods, var_decomp])Compute forecast error variance decomposition (“fevd”) fittedvalues
()The predicted insample values of the response variables of the model. forecast
(y, steps[, exog_future])Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y forecast_cov
([steps, method])Compute forecast covariance matrices for desired number of steps forecast_interval
(y, steps[, alpha, exog_future])Construct forecast interval estimates assuming the y are Gaussian get_eq_index
(name)Return integer position of requested equation name info_criteria
()information criteria for lagorder selection intercept_longrun
()Long run intercept of stable VAR process irf
([periods, var_decomp, var_order])Analyze impulse responses to shocks in system irf_errband_mc
([orth, repl, T, signif, …])Compute Monte Carlo integrated error bands assuming normally distributed for impulse response functions irf_resim
([orth, repl, T, seed, burn, cum])Simulates impulse response function, returning an array of simulations. is_stable
([verbose])Determine stability based on model coefficients llf
()Compute VAR(p) loglikelihood long_run_effects
()Compute long-run effect of unit impulse ma_rep
([maxn])Compute MA(\(\infty\)) coefficient matrices mean
()Long run intercept of stable VAR process mse
(steps)Compute theoretical forecast error variance matrices orth_ma_rep
([maxn, P])Compute orthogonalized MA coefficient matrices using P matrix such that \(\Sigma_u = PP^\prime\). plot
()Plot input time series plot_acorr
([nlags, resid, linewidth])Plot autocorrelation of sample (endog) or residuals plot_forecast
(steps[, alpha, plot_stderr])Plot forecast plot_sample_acorr
([nlags, linewidth])Plot theoretical autocorrelation function plotsim
([steps, offset, seed])Plot a simulation from the VAR(p) process for the desired number of steps pvalues
()Two-sided p-values for model coefficients from Student t-distribution pvalues_dt
()pvalues_endog_lagged
()reorder
(order)Reorder variables for structural specification resid
()Residuals of response variable resulting from estimated coefficients resid_acorr
([nlags])Compute sample autocorrelation (including lag 0) resid_acov
([nlags])Compute centered sample autocovariance (including lag 0) resid_corr
()Centered residual correlation matrix roots
()sample_acorr
([nlags])sample_acov
([nlags])sigma_u_mle
()(Biased) maximum likelihood estimate of noise process covariance simulate_var
([steps, offset, seed])simulate the VAR(p) process for the desired number of steps stderr
()Standard errors of coefficients, reshaped to match in size stderr_dt
()stderr_endog_lagged
()summary
()Compute console output summary of estimates test_causality
(caused[, causing, kind, signif])Test Granger causality test_inst_causality
(causing[, signif])Test for instantaneous causality test_normality
([signif])Test assumption of normal-distributed errors using Jarque-Bera-style omnibus Chi^2 test. test_whiteness
([nlags, signif, adjusted])Residual whiteness tests using Portmanteau test to_vecm
()tvalues
()Compute t-statistics. tvalues_dt
()tvalues_endog_lagged
()Attributes
aic
Akaike information criterion bic
Bayesian a.k.a. df_model
Number of estimated parameters, including the intercept / trends df_resid
Number of observations minus number of estimated parameters fpe
Final Prediction Error (FPE) hqic
Hannan-Quinn criterion