Source code for statsmodels.base._prediction_inference

"""
Created on Fri Dec 19 11:29:18 2014

Author: Josef Perktold
License: BSD-3

"""

import numpy as np
import pandas as pd
from scipy import stats


# this is similar to ContrastResults after t_test, partially copied, adjusted
class PredictionResultsBase:
    """Based class for get_prediction results
    """

    def __init__(self, predicted, var_pred, func=None, deriv=None,
                 df=None, dist=None, row_labels=None, **kwds):
        self.predicted = predicted
        self.var_pred = var_pred
        self.func = func
        self.deriv = deriv
        self.df = df
        self.row_labels = row_labels
        self.__dict__.update(kwds)

        if dist is None or dist == 'norm':
            self.dist = stats.norm
            self.dist_args = ()
        elif dist == 't':
            self.dist = stats.t
            self.dist_args = (self.df,)
        else:
            self.dist = dist
            self.dist_args = ()

    @property
    def se(self):
        return np.sqrt(self.var_pred)

    @property
    def tvalues(self):
        return self.predicted / self.se

    def t_test(self, value=0, alternative='two-sided'):
        '''z- or t-test for hypothesis that mean is equal to value

        Parameters
        ----------
        value : array_like
            value under the null hypothesis
        alternative : str
            'two-sided', 'larger', 'smaller'

        Returns
        -------
        stat : ndarray
            test statistic
        pvalue : ndarray
            p-value of the hypothesis test, the distribution is given by
            the attribute of the instance, specified in `__init__`. Default
            if not specified is the normal distribution.

        '''
        # assumes symmetric distribution
        stat = (self.predicted - value) / self.se

        if alternative in ['two-sided', '2-sided', '2s']:
            pvalue = self.dist.sf(np.abs(stat), *self.dist_args)*2
        elif alternative in ['larger', 'l']:
            pvalue = self.dist.sf(stat, *self.dist_args)
        elif alternative in ['smaller', 's']:
            pvalue = self.dist.cdf(stat, *self.dist_args)
        else:
            raise ValueError('invalid alternative')
        return stat, pvalue

    def _conf_int_generic(self, center, se, alpha, dist_args=None):
        """internal function to avoid code duplication
        """
        if dist_args is None:
            dist_args = ()

        q = self.dist.ppf(1 - alpha / 2., *dist_args)
        lower = center - q * se
        upper = center + q * se
        ci = np.column_stack((lower, upper))
        # if we want to stack at a new last axis, for lower.ndim > 1
        # np.concatenate((lower[..., None], upper[..., None]), axis=-1)
        return ci

    def conf_int(self, *, alpha=0.05, **kwds):
        """Confidence interval for the predicted value.

        Parameters
        ----------
        alpha : float, optional
            The significance level for the confidence interval.
            ie., The default `alpha` = .05 returns a 95% confidence interval.

        kwds : extra keyword arguments
            Ignored in base class, only for compatibility, consistent signature
            with subclasses

        Returns
        -------
        ci : ndarray, (k_constraints, 2)
            The array has the lower and the upper limit of the confidence
            interval in the columns.
        """

        ci = self._conf_int_generic(self.predicted, self.se, alpha,
                                    dist_args=self.dist_args)
        return ci

    def summary_frame(self, alpha=0.05):
        """Summary frame

        Parameters
        ----------
        alpha : float, optional
            The significance level for the confidence interval.
            ie., The default `alpha` = .05 returns a 95% confidence interval.

        Returns
        -------
        pandas DataFrame with columns 'predicted', 'se', 'ci_lower', 'ci_upper'
        """
        ci = self.conf_int(alpha=alpha)
        to_include = {}
        to_include['predicted'] = self.predicted
        to_include['se'] = self.se
        to_include['ci_lower'] = ci[:, 0]
        to_include['ci_upper'] = ci[:, 1]

        self.table = to_include
        # pandas dict does not handle 2d_array
        # data = np.column_stack(list(to_include.values()))
        # names = ....
        res = pd.DataFrame(to_include, index=self.row_labels,
                           columns=to_include.keys())
        return res


class PredictionResultsMonotonic(PredictionResultsBase):

    def __init__(self, predicted, var_pred, linpred=None, linpred_se=None,
                 func=None, deriv=None, df=None, dist=None, row_labels=None):
        # TODO: is var_resid used? drop from arguments?
        self.predicted = predicted
        self.var_pred = var_pred
        self.linpred = linpred
        self.linpred_se = linpred_se
        self.func = func
        self.deriv = deriv
        self.df = df
        self.row_labels = row_labels

        if dist is None or dist == 'norm':
            self.dist = stats.norm
            self.dist_args = ()
        elif dist == 't':
            self.dist = stats.t
            self.dist_args = (self.df,)
        else:
            self.dist = dist
            self.dist_args = ()

    def _conf_int_generic(self, center, se, alpha, dist_args=None):
        """internal function to avoid code duplication
        """
        if dist_args is None:
            dist_args = ()

        q = self.dist.ppf(1 - alpha / 2., *dist_args)
        lower = center - q * se
        upper = center + q * se
        ci = np.column_stack((lower, upper))
        # if we want to stack at a new last axis, for lower.ndim > 1
        # np.concatenate((lower[..., None], upper[..., None]), axis=-1)
        return ci

    def conf_int(self, method='endpoint', alpha=0.05, **kwds):
        """Confidence interval for the predicted value.

        This is currently only available for t and z tests.

        Parameters
        ----------
        method : {"endpoint", "delta"}
            Method for confidence interval, "m
            If method is "endpoint", then the confidence interval of the
            linear predictor is transformed by the prediction function.
            If method is "delta", then the delta-method is used. The confidence
            interval in this case might reach outside the range of the
            prediction, for example probabilities larger than one or smaller
            than zero.
        alpha : float, optional
            The significance level for the confidence interval.
            ie., The default `alpha` = .05 returns a 95% confidence interval.
        kwds : extra keyword arguments
            currently ignored, only for compatibility, consistent signature

        Returns
        -------
        ci : ndarray, (k_constraints, 2)
            The array has the lower and the upper limit of the confidence
            interval in the columns.
        """
        tmp = np.linspace(0, 1, 6)
        # TODO: drop check?
        is_linear = (self.func(tmp) == tmp).all()
        if method == 'endpoint' and not is_linear:
            ci_linear = self._conf_int_generic(self.linpred, self.linpred_se,
                                               alpha,
                                               dist_args=self.dist_args)
            ci = self.func(ci_linear)
        elif method == 'delta' or is_linear:
            ci = self._conf_int_generic(self.predicted, self.se, alpha,
                                        dist_args=self.dist_args)

        return ci


class PredictionResultsDelta(PredictionResultsBase):
    """Prediction results based on delta method
    """

    def __init__(self, results_delta, **kwds):

        predicted = results_delta.predicted()
        var_pred = results_delta.var()

        super().__init__(predicted, var_pred, **kwds)


[docs] class PredictionResultsMean(PredictionResultsBase): """Prediction results for GLM. This results class is used for backwards compatibility for `get_prediction` with GLM. The new PredictionResults classes dropped the `_mean` post fix in the attribute names. """ def __init__(self, predicted_mean, var_pred_mean, var_resid=None, df=None, dist=None, row_labels=None, linpred=None, link=None): # TODO: is var_resid used? drop from arguments? self.predicted = predicted_mean self.var_pred = var_pred_mean self.df = df self.var_resid = var_resid self.row_labels = row_labels self.linpred = linpred self.link = link if dist is None or dist == 'norm': self.dist = stats.norm self.dist_args = () elif dist == 't': self.dist = stats.t self.dist_args = (self.df,) else: self.dist = dist self.dist_args = () @property def predicted_mean(self): # alias for backwards compatibility return self.predicted @property def var_pred_mean(self): # alias for backwards compatibility return self.var_pred @property def se_mean(self): # alias for backwards compatibility return self.se
[docs] def conf_int(self, method='endpoint', alpha=0.05, **kwds): """Confidence interval for the predicted value. This is currently only available for t and z tests. Parameters ---------- method : {"endpoint", "delta"} Method for confidence interval, "m If method is "endpoint", then the confidence interval of the linear predictor is transformed by the prediction function. If method is "delta", then the delta-method is used. The confidence interval in this case might reach outside the range of the prediction, for example probabilities larger than one or smaller than zero. alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. kwds : extra keyword arguments currently ignored, only for compatibility, consistent signature Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns. """ tmp = np.linspace(0, 1, 6) is_linear = (self.link.inverse(tmp) == tmp).all() if method == 'endpoint' and not is_linear: ci_linear = self.linpred.conf_int(alpha=alpha, obs=False) ci = self.link.inverse(ci_linear) elif method == 'delta' or is_linear: se = self.se_mean q = self.dist.ppf(1 - alpha / 2., *self.dist_args) lower = self.predicted_mean - q * se upper = self.predicted_mean + q * se ci = np.column_stack((lower, upper)) # if we want to stack at a new last axis, for lower.ndim > 1 # np.concatenate((lower[..., None], upper[..., None]), axis=-1) return ci
[docs] def summary_frame(self, alpha=0.05): """Summary frame Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. Returns ------- pandas DataFrame with columns 'mean', 'mean_se', 'mean_ci_lower', 'mean_ci_upper'. """ # TODO: finish and cleanup ci_mean = self.conf_int(alpha=alpha) to_include = {} to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean to_include['mean_ci_lower'] = ci_mean[:, 0] to_include['mean_ci_upper'] = ci_mean[:, 1] self.table = to_include # pandas dict does not handle 2d_array # data = np.column_stack(list(to_include.values())) # names = .... res = pd.DataFrame(to_include, index=self.row_labels, columns=to_include.keys()) return res
def _get_exog_predict(self, exog=None, transform=True, row_labels=None): """Prepare or transform exog for prediction Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. Returns ------- exog : ndarray Prediction exog row_labels : list of str Labels or pandas index for rows of prediction """ # prepare exog and row_labels, based on base Results.predict if transform and hasattr(self.model, 'formula') and exog is not None: from statsmodels.formula._manager import FormulaManager mgr = FormulaManager() if isinstance(exog, pd.Series): exog = pd.DataFrame(exog) exog = mgr.get_matrices(self.model.data.model_spec, exog) if exog is not None: if row_labels is None: row_labels = getattr(exog, 'index', None) if callable(row_labels): row_labels = None exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] else: exog = self.model.exog if row_labels is None: row_labels = getattr(self.model.data, 'row_labels', None) return exog, row_labels def get_prediction_glm(self, exog=None, transform=True, row_labels=None, linpred=None, link=None, pred_kwds=None): """ Compute prediction results for GLM compatible models. Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. linpred : linear prediction instance Instance of linear prediction results used for confidence intervals based on endpoint transformation. link : instance of link function If no link function is provided, then the `model.family.link` is used. pred_kwds : dict Some models can take additional keyword arguments, such as offset or additional exog in multi-part models. See the predict method of the model for the details. Returns ------- prediction_results : generalized_linear_model.PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. """ # prepare exog and row_labels, based on base Results.predict exog, row_labels = _get_exog_predict( self, exog=exog, transform=transform, row_labels=row_labels, ) if pred_kwds is None: pred_kwds = {} predicted_mean = self.model.predict(self.params, exog, **pred_kwds) covb = self.cov_params() link_deriv = self.model.family.link.inverse_deriv(linpred.predicted_mean) var_pred_mean = link_deriv**2 * (exog * np.dot(covb, exog.T).T).sum(1) var_resid = self.scale # self.mse_resid / weights # TODO: check that we have correct scale, Refactor scale #??? # special case for now: if self.cov_type == 'fixed scale': var_resid = self.cov_kwds['scale'] dist = ['norm', 't'][self.use_t] return PredictionResultsMean( predicted_mean, var_pred_mean, var_resid, df=self.df_resid, dist=dist, row_labels=row_labels, linpred=linpred, link=link) def get_prediction_linear(self, exog=None, transform=True, row_labels=None, pred_kwds=None, index=None): """ Compute prediction results for linear prediction. Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. pred_kwargs : Some models can take additional keyword arguments, such as offset or additional exog in multi-part models. See the predict method of the model for the details. index : slice or array-index Is used to select rows and columns of cov_params, if the prediction function only depends on a subset of parameters. Returns ------- prediction_results : PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction. """ # prepare exog and row_labels, based on base Results.predict exog, row_labels = _get_exog_predict( self, exog=exog, transform=transform, row_labels=row_labels, ) if pred_kwds is None: pred_kwds = {} k1 = exog.shape[1] if len(self.params > k1): # TODO: we allow endpoint transformation only for the first link index = np.arange(k1) else: index = None # get linear prediction and standard errors covb = self.cov_params(column=index) var_pred = (exog * np.dot(covb, exog.T).T).sum(1) pred_kwds_linear = pred_kwds.copy() pred_kwds_linear["which"] = "linear" predicted = self.model.predict(self.params, exog, **pred_kwds_linear) dist = ['norm', 't'][self.use_t] res = PredictionResultsBase(predicted, var_pred, df=self.df_resid, dist=dist, row_labels=row_labels ) return res def get_prediction_monotonic(self, exog=None, transform=True, row_labels=None, link=None, pred_kwds=None, index=None): """ Compute prediction results when endpoint transformation is valid. Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. link : instance of link function If no link function is provided, then the ``mmodel.family.link` is used. pred_kwargs : Some models can take additional keyword arguments, such as offset or additional exog in multi-part models. See the predict method of the model for the details. index : slice or array-index Is used to select rows and columns of cov_params, if the prediction function only depends on a subset of parameters. Returns ------- prediction_results : PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction. """ # prepare exog and row_labels, based on base Results.predict exog, row_labels = _get_exog_predict( self, exog=exog, transform=transform, row_labels=row_labels, ) if pred_kwds is None: pred_kwds = {} if link is None: link = self.model.family.link func_deriv = link.inverse_deriv # get linear prediction and standard errors covb = self.cov_params(column=index) linpred_var = (exog * np.dot(covb, exog.T).T).sum(1) pred_kwds_linear = pred_kwds.copy() pred_kwds_linear["which"] = "linear" linpred = self.model.predict(self.params, exog, **pred_kwds_linear) predicted = self.model.predict(self.params, exog, **pred_kwds) link_deriv = func_deriv(linpred) var_pred = link_deriv**2 * linpred_var dist = ['norm', 't'][self.use_t] res = PredictionResultsMonotonic(predicted, var_pred, df=self.df_resid, dist=dist, row_labels=row_labels, linpred=linpred, linpred_se=np.sqrt(linpred_var), func=link.inverse, deriv=func_deriv) return res def get_prediction_delta( self, exog=None, which="mean", average=False, agg_weights=None, transform=True, row_labels=None, pred_kwds=None ): """ compute prediction results Parameters ---------- exog : array_like, optional The values for which you want to predict. which : str The statistic that is prediction. Which statistics are available depends on the model.predict method. average : bool If average is True, then the mean prediction is computed, that is, predictions are computed for individual exog and then them mean over observation is used. If average is False, then the results are the predictions for all observations, i.e. same length as ``exog``. agg_weights : ndarray, optional Aggregation weights, only used if average is True. The weights are not normalized. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. pred_kwargs : Some models can take additional keyword arguments, such as offset or additional exog in multi-part models. See the predict method of the model for the details. Returns ------- prediction_results : generalized_linear_model.PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. """ # prepare exog and row_labels, based on base Results.predict exog, row_labels = _get_exog_predict( self, exog=exog, transform=transform, row_labels=row_labels, ) if agg_weights is None: agg_weights = np.array(1.) def f_pred(p): """Prediction function as function of params """ pred = self.model.predict(p, exog, which=which, **pred_kwds) if average: # using `.T` which should work if aggweights is 1-dim pred = (pred.T * agg_weights.T).mean(-1).T return pred nlpm = self._get_wald_nonlinear(f_pred) # TODO: currently returns NonlinearDeltaCov res = PredictionResultsDelta(nlpm) return res def get_prediction(self, exog=None, transform=True, which="mean", row_labels=None, average=False, agg_weights=None, pred_kwds=None): """ Compute prediction results when endpoint transformation is valid. Parameters ---------- exog : array_like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. which : str Which statistic is to be predicted. Default is "mean". The available statistics and options depend on the model. see the model.predict docstring linear : bool Linear has been replaced by the `which` keyword and will be deprecated. If linear is True, then `which` is ignored and the linear prediction is returned. row_labels : list of str or None If row_lables are provided, then they will replace the generated labels. average : bool If average is True, then the mean prediction is computed, that is, predictions are computed for individual exog and then the average over observation is used. If average is False, then the results are the predictions for all observations, i.e. same length as ``exog``. agg_weights : ndarray, optional Aggregation weights, only used if average is True. The weights are not normalized. **kwargs : Some models can take additional keyword arguments, such as offset, exposure or additional exog in multi-part models like zero inflated models. See the predict method of the model for the details. Returns ------- prediction_results : PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary dataframe for the prediction. Notes ----- Status: new in 0.14, experimental """ use_endpoint = getattr(self.model, "_use_endpoint", True) if which == "linear": res = get_prediction_linear( self, exog=exog, transform=transform, row_labels=row_labels, pred_kwds=pred_kwds, ) elif (which == "mean") and (use_endpoint is True) and (average is False): # endpoint transformation k1 = self.model.exog.shape[1] if len(self.params > k1): # TODO: we allow endpoint transformation only for the first link index = np.arange(k1) else: index = None pred_kwds["which"] = which # TODO: add link or ilink to all link based models (except zi link = getattr(self.model, "link", None) if link is None: # GLM if hasattr(self.model, "family"): link = getattr(self.model.family, "link", None) if link is None: # defaulting to log link for count models import warnings warnings.warn("using default log-link in get_prediction") from statsmodels.genmod.families import links link = links.Log() res = get_prediction_monotonic( self, exog=exog, transform=transform, row_labels=row_labels, link=link, pred_kwds=pred_kwds, index=index, ) else: # which is not mean or linear, or we need averaging res = get_prediction_delta( self, exog=exog, which=which, average=average, agg_weights=agg_weights, pred_kwds=pred_kwds, ) return res def params_transform_univariate(params, cov_params, link=None, transform=None, row_labels=None): """ results for univariate, nonlinear, monotonicaly transformed parameters This provides transformed values, standard errors and confidence interval for transformations of parameters, for example in calculating rates with `exp(params)` in the case of Poisson or other models with exponential mean function. """ from statsmodels.genmod.families import links if link is None and transform is None: link = links.Log() if row_labels is None and hasattr(params, 'index'): row_labels = params.index params = np.asarray(params) predicted_mean = link.inverse(params) link_deriv = link.inverse_deriv(params) var_pred_mean = link_deriv**2 * np.diag(cov_params) # TODO: do we want covariance also, or just var/se dist = stats.norm # TODO: need ci for linear prediction, method of `lin_pred linpred = PredictionResultsMean( params, np.diag(cov_params), dist=dist, row_labels=row_labels, link=links.Identity()) res = PredictionResultsMean( predicted_mean, var_pred_mean, dist=dist, row_labels=row_labels, linpred=linpred, link=link) return res

Last update: Dec 23, 2024