Source code for statsmodels.discrete.truncated_model
__all__ = ["TruncatedLFPoisson", "TruncatedLFNegativeBinomialP",
"HurdleCountModel"]
import warnings
import numpy as np
import statsmodels.base.model as base
import statsmodels.base.wrapper as wrap
import statsmodels.regression.linear_model as lm
from statsmodels.distributions.discrete import (
truncatedpoisson,
truncatednegbin,
)
from statsmodels.discrete.discrete_model import (
DiscreteModel,
CountModel,
CountResults,
L1CountResults,
Poisson,
NegativeBinomialP,
GeneralizedPoisson,
_discrete_results_docs,
)
from statsmodels.tools.numdiff import approx_hess
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.sm_exceptions import ConvergenceWarning
from copy import deepcopy
class TruncatedLFGeneric(CountModel):
__doc__ = """
Generic Truncated model for count data
.. versionadded:: 0.14.0
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
truncation : int, optional
Truncation parameter specify truncation point out of the support
of the distribution. pmf(k) = 0 for k <= truncation
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, truncation=0, offset=None,
exposure=None, missing='none', **kwargs):
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
missing=missing,
**kwargs
)
mask = self.endog > truncation
self.exog = self.exog[mask]
self.endog = self.endog[mask]
if offset is not None:
self.offset = self.offset[mask]
if exposure is not None:
self.exposure = self.exposure[mask]
self.trunc = truncation
self.truncation = truncation # needed for recreating model
# We cannot set the correct df_resid here, not enough information
self._init_keys.extend(['truncation'])
self._null_drop_keys = []
def loglike(self, params):
"""
Loglikelihood of Generic Truncated model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
loglike : float
The log-likelihood function of the model evaluated at `params`.
See notes.
Notes
-----
"""
return np.sum(self.loglikeobs(params))
def loglikeobs(self, params):
"""
Loglikelihood for observations of Generic Truncated model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
loglike : ndarray (nobs,)
The log likelihood for each observation of the model evaluated
at `params`. See Notes
Notes
-----
"""
llf_main = self.model_main.loglikeobs(params)
yt = self.trunc + 1
# equivalent ways to compute truncation probability
# pmf0 = np.zeros_like(self.endog, dtype=np.float64)
# for i in range(self.trunc + 1):
# model = self.model_main.__class__(np.ones_like(self.endog) * i,
# self.exog)
# pmf0 += np.exp(model.loglikeobs(params))
#
# pmf1 = self.model_main.predict(
# params, which="prob", y_values=np.arange(yt)).sum(-1)
pmf = self.predict(
params, which="prob-base", y_values=np.arange(yt)).sum(-1)
# Skip pmf = 1 to avoid warnings
log_1_m_pmf = np.full_like(pmf, -np.inf)
loc = pmf > 1
log_1_m_pmf[loc] = np.nan
loc = pmf < 1
log_1_m_pmf[loc] = np.log(1 - pmf[loc])
llf = llf_main - log_1_m_pmf
return llf
def score_obs(self, params):
"""
Generic Truncated model score (gradient) vector of the log-likelihood
Parameters
----------
params : array-like
The parameters of the model
Returns
-------
score : ndarray, 1-D
The score vector of the model, i.e. the first derivative of the
loglikelihood function, evaluated at `params`
"""
score_main = self.model_main.score_obs(params)
pmf = np.zeros_like(self.endog, dtype=np.float64)
# TODO: can we rewrite to following without creating new models
score_trunc = np.zeros_like(score_main, dtype=np.float64)
for i in range(self.trunc + 1):
model = self.model_main.__class__(
np.ones_like(self.endog) * i,
self.exog,
offset=getattr(self, "offset", None),
exposure=getattr(self, "exposure", None),
)
pmf_i = np.exp(model.loglikeobs(params))
score_trunc += (model.score_obs(params).T * pmf_i).T
pmf += pmf_i
dparams = score_main + (score_trunc.T / (1 - pmf)).T
return dparams
def score(self, params):
"""
Generic Truncated model score (gradient) vector of the log-likelihood
Parameters
----------
params : array-like
The parameters of the model
Returns
-------
score : ndarray, 1-D
The score vector of the model, i.e. the first derivative of the
loglikelihood function, evaluated at `params`
"""
return self.score_obs(params).sum(0)
def fit(self, start_params=None, method='bfgs', maxiter=35,
full_output=1, disp=1, callback=None,
cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs):
if start_params is None:
offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0)
if np.size(offset) == 1 and offset == 0:
offset = None
model = self.model_main.__class__(self.endog, self.exog,
offset=offset)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=ConvergenceWarning)
start_params = model.fit(disp=0).params
# Todo: check how we can to this in __init__
k_params = self.df_model + 1 + self.k_extra
self.df_resid = self.endog.shape[0] - k_params
mlefit = super().fit(
start_params=start_params,
method=method,
maxiter=maxiter,
disp=disp,
full_output=full_output,
callback=lambda x: x,
**kwargs
)
zipfit = self.result_class(self, mlefit._results)
result = self.result_class_wrapper(zipfit)
if cov_kwds is None:
cov_kwds = {}
result._get_robustcov_results(cov_type=cov_type,
use_self=True, use_t=use_t, **cov_kwds)
return result
fit.__doc__ = DiscreteModel.fit.__doc__
def fit_regularized(
self, start_params=None, method='l1',
maxiter='defined_by_method', full_output=1, disp=1, callback=None,
alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4,
qc_tol=0.03, **kwargs):
if np.size(alpha) == 1 and alpha != 0:
k_params = self.exog.shape[1]
alpha = alpha * np.ones(k_params)
alpha_p = alpha
if start_params is None:
offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0)
if np.size(offset) == 1 and offset == 0:
offset = None
model = self.model_main.__class__(self.endog, self.exog,
offset=offset)
start_params = model.fit_regularized(
start_params=start_params, method=method, maxiter=maxiter,
full_output=full_output, disp=0, callback=callback,
alpha=alpha_p, trim_mode=trim_mode,
auto_trim_tol=auto_trim_tol,
size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs).params
cntfit = super(CountModel, self).fit_regularized(
start_params=start_params, method=method, maxiter=maxiter,
full_output=full_output, disp=disp, callback=callback,
alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol,
size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs)
if method in ['l1', 'l1_cvxopt_cp']:
discretefit = self.result_class_reg(self, cntfit)
else:
raise TypeError(
"argument method == %s, which is not handled" % method)
return self.result_class_reg_wrapper(discretefit)
fit_regularized.__doc__ = DiscreteModel.fit_regularized.__doc__
def hessian(self, params):
"""
Generic Truncated model Hessian matrix of the loglikelihood
Parameters
----------
params : array-like
The parameters of the model
Returns
-------
hess : ndarray, (k_vars, k_vars)
The Hessian, second derivative of loglikelihood function,
evaluated at `params`
Notes
-----
"""
return approx_hess(params, self.loglike)
def predict(self, params, exog=None, exposure=None, offset=None,
which='mean', y_values=None):
"""
Predict response variable or other statistic given exogenous variables.
Parameters
----------
params : array_like
The parameters of the model.
exog : ndarray, optional
Explanatory variables for the main count model.
If ``exog`` is None, then the data from the model will be used.
offset : ndarray, optional
Offset is added to the linear predictor of the mean function with
coefficient equal to 1.
Default is zero if exog is not None, and the model offset if exog
is None.
exposure : ndarray, optional
Log(exposure) is added to the linear predictor with coefficient
equal to 1. If exposure is specified, then it will be logged by
the method. The user does not need to log it first.
Default is one if exog is is not None, and it is the model exposure
if exog is None.
which : str (optional)
Statitistic to predict. Default is 'mean'.
- 'mean' : the conditional expectation of endog E(y | x)
- 'mean-main' : mean parameter of truncated count model.
Note, this is not the mean of the truncated distribution.
- 'linear' : the linear predictor of the truncated count model.
- 'var' : returns the estimated variance of endog implied by the
model.
- 'prob-trunc' : probability of truncation. This is the probability
of observing a zero count implied
by the truncation model.
- 'prob' : probabilities of each count from 0 to max(endog), or
for y_values if those are provided. This is a multivariate
return (2-dim when predicting for several observations).
The probabilities in the truncated region are zero.
- 'prob-base' : probabilities for untruncated base distribution.
The probabilities are for each count from 0 to max(endog), or
for y_values if those are provided. This is a multivariate
return (2-dim when predicting for several observations).
y_values : array_like
Values of the random variable endog at which pmf is evaluated.
Only used if ``which="prob"``
Returns
-------
predicted values
Notes
-----
If exposure is specified, then it will be logged by the method.
The user does not need to log it first.
"""
exog, offset, exposure = self._get_predict_arrays(
exog=exog,
offset=offset,
exposure=exposure
)
fitted = np.dot(exog, params[:exog.shape[1]])
linpred = fitted + exposure + offset
if which == 'mean':
mu = np.exp(linpred)
if self.truncation == 0:
prob_main = self.model_main._prob_nonzero(mu, params)
return mu / prob_main
elif self.truncation == -1:
return mu
elif self.truncation > 0:
counts = np.atleast_2d(np.arange(0, self.truncation + 1))
# next is same as in prob-main below
probs = self.model_main.predict(
params, exog=exog, exposure=np.exp(exposure),
offset=offset, which="prob", y_values=counts)
prob_tregion = probs.sum(1)
mean_tregion = (np.arange(self.truncation + 1) * probs).sum(1)
mean = (mu - mean_tregion) / (1 - prob_tregion)
return mean
else:
raise ValueError("unsupported self.truncation")
elif which == 'linear':
return linpred
elif which == 'mean-main':
return np.exp(linpred)
elif which == 'prob':
if y_values is not None:
counts = np.atleast_2d(y_values)
else:
counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1))
mu = np.exp(linpred)[:, None]
if self.k_extra == 0:
# poisson, no extra params
probs = self.model_dist.pmf(counts, mu, self.trunc)
elif self.k_extra == 1:
p = self.model_main.parameterization
probs = self.model_dist.pmf(counts, mu, params[-1],
p, self.trunc)
else:
raise ValueError("k_extra is not 0 or 1")
return probs
elif which == 'prob-base':
if y_values is not None:
counts = np.asarray(y_values)
else:
counts = np.arange(0, np.max(self.endog)+1)
probs = self.model_main.predict(
params, exog=exog, exposure=np.exp(exposure),
offset=offset, which="prob", y_values=counts)
return probs
elif which == 'var':
mu = np.exp(linpred)
counts = np.atleast_2d(np.arange(0, self.truncation + 1))
# next is same as in prob-main below
probs = self.model_main.predict(
params, exog=exog, exposure=np.exp(exposure),
offset=offset, which="prob", y_values=counts)
prob_tregion = probs.sum(1)
mean_tregion = (np.arange(self.truncation + 1) * probs).sum(1)
mean = (mu - mean_tregion) / (1 - prob_tregion)
mnc2_tregion = (np.arange(self.truncation + 1)**2 *
probs).sum(1)
vm = self.model_main._var(mu, params)
# uncentered 2nd moment
mnc2 = (mu**2 + vm - mnc2_tregion) / (1 - prob_tregion)
v = mnc2 - mean**2
return v
else:
raise ValueError(
"argument which == %s not handled" % which)
[docs]
class TruncatedLFPoisson(TruncatedLFGeneric):
__doc__ = """
Truncated Poisson model for count data
.. versionadded:: 0.14.0
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
truncation : int, optional
Truncation parameter specify truncation point out of the support
of the distribution. pmf(k) = 0 for k <= truncation
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None, exposure=None,
truncation=0, missing='none', **kwargs):
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
truncation=truncation,
missing=missing,
**kwargs
)
self.model_main = Poisson(self.endog, self.exog,
exposure=getattr(self, "exposure", None),
offset=getattr(self, "offset", None),
)
self.model_dist = truncatedpoisson
self.result_class = TruncatedLFPoissonResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
def _predict_mom_trunc0(self, params, mu):
"""Predict mean and variance of zero-truncated distribution.
experimental api, will likely be replaced by other methods
Parameters
----------
params : array_like
The model parameters. This is only used to extract extra params
like dispersion parameter.
mu : array_like
Array of mean predictions for main model.
Returns
-------
Predicted conditional variance.
"""
w = (1 - np.exp(-mu)) # prob of no truncation, 1 - P(y=0)
m = mu / w
var_ = m - (1 - w) * m**2
return m, var_
[docs]
class TruncatedLFNegativeBinomialP(TruncatedLFGeneric):
__doc__ = """
Truncated Generalized Negative Binomial model for count data
.. versionadded:: 0.14.0
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
truncation : int, optional
Truncation parameter specify truncation point out of the support
of the distribution. pmf(k) = 0 for k <= truncation
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None, exposure=None,
truncation=0, p=2, missing='none', **kwargs):
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
truncation=truncation,
missing=missing,
**kwargs
)
self.model_main = NegativeBinomialP(
self.endog,
self.exog,
exposure=getattr(self, "exposure", None),
offset=getattr(self, "offset", None),
p=p
)
self.k_extra = self.model_main.k_extra
self.exog_names.extend(self.model_main.exog_names[-self.k_extra:])
self.model_dist = truncatednegbin
self.result_class = TruncatedNegativeBinomialResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
def _predict_mom_trunc0(self, params, mu):
"""Predict mean and variance of zero-truncated distribution.
experimental api, will likely be replaced by other methods
Parameters
----------
params : array_like
The model parameters. This is only used to extract extra params
like dispersion parameter.
mu : array_like
Array of mean predictions for main model.
Returns
-------
Predicted conditional variance.
"""
# note: prob_zero and vm are distribution specific, rest is generic
# when mean of base model is mu
alpha = params[-1]
p = self.model_main.parameterization
prob_zero = (1 + alpha * mu**(p-1))**(- 1 / alpha)
w = 1 - prob_zero # prob of no truncation, 1 - P(y=0)
m = mu / w
vm = mu * (1 + alpha * mu**(p-1)) # variance of NBP
# uncentered 2nd moment is vm + mu**2
mnc2 = (mu**2 + vm) / w # uses mnc2_tregion = 0
var_ = mnc2 - m**2
return m, var_
class TruncatedLFGeneralizedPoisson(TruncatedLFGeneric):
__doc__ = """
Truncated Generalized Poisson model for count data
.. versionadded:: 0.14.0
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
truncation : int, optional
Truncation parameter specify truncation point out of the support
of the distribution. pmf(k) = 0 for k <= truncation
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None, exposure=None,
truncation=0, p=2, missing='none', **kwargs):
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
truncation=truncation,
missing=missing,
**kwargs
)
self.model_main = GeneralizedPoisson(
self.endog,
self.exog,
exposure=getattr(self, "exposure", None),
offset=getattr(self, "offset", None),
p=p
)
self.k_extra = self.model_main.k_extra
self.exog_names.extend(self.model_main.exog_names[-self.k_extra:])
self.model_dist = None
self.result_class = TruncatedNegativeBinomialResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
class _RCensoredGeneric(CountModel):
__doc__ = """
Generic right Censored model for count data
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None, exposure=None,
missing='none', **kwargs):
self.zero_idx = np.nonzero(endog == 0)[0]
self.nonzero_idx = np.nonzero(endog)[0]
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
missing=missing,
**kwargs
)
def loglike(self, params):
"""
Loglikelihood of Generic Censored model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
loglike : float
The log-likelihood function of the model evaluated at `params`.
See notes.
Notes
-----
"""
return np.sum(self.loglikeobs(params))
def loglikeobs(self, params):
"""
Loglikelihood for observations of Generic Censored model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
loglike : ndarray (nobs,)
The log likelihood for each observation of the model evaluated
at `params`. See Notes
Notes
-----
"""
llf_main = self.model_main.loglikeobs(params)
llf = np.concatenate(
(llf_main[self.zero_idx],
np.log(1 - np.exp(llf_main[self.nonzero_idx])))
)
return llf
def score_obs(self, params):
"""
Generic Censored model score (gradient) vector of the log-likelihood
Parameters
----------
params : array-like
The parameters of the model
Returns
-------
score : ndarray, 1-D
The score vector of the model, i.e. the first derivative of the
loglikelihood function, evaluated at `params`
"""
score_main = self.model_main.score_obs(params)
llf_main = self.model_main.loglikeobs(params)
score = np.concatenate((
score_main[self.zero_idx],
(score_main[self.nonzero_idx].T *
-np.exp(llf_main[self.nonzero_idx]) /
(1 - np.exp(llf_main[self.nonzero_idx]))).T
))
return score
def score(self, params):
"""
Generic Censored model score (gradient) vector of the log-likelihood
Parameters
----------
params : array-like
The parameters of the model
Returns
-------
score : ndarray, 1-D
The score vector of the model, i.e. the first derivative of the
loglikelihood function, evaluated at `params`
"""
return self.score_obs(params).sum(0)
def fit(self, start_params=None, method='bfgs', maxiter=35,
full_output=1, disp=1, callback=None,
cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs):
if start_params is None:
offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0)
if np.size(offset) == 1 and offset == 0:
offset = None
model = self.model_main.__class__(self.endog, self.exog,
offset=offset)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=ConvergenceWarning)
start_params = model.fit(disp=0).params
mlefit = super().fit(
start_params=start_params,
method=method,
maxiter=maxiter,
disp=disp,
full_output=full_output,
callback=lambda x: x,
**kwargs
)
zipfit = self.result_class(self, mlefit._results)
result = self.result_class_wrapper(zipfit)
if cov_kwds is None:
cov_kwds = {}
result._get_robustcov_results(cov_type=cov_type,
use_self=True, use_t=use_t, **cov_kwds)
return result
fit.__doc__ = DiscreteModel.fit.__doc__
def fit_regularized(
self, start_params=None, method='l1',
maxiter='defined_by_method', full_output=1, disp=1, callback=None,
alpha=0, trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=1e-4,
qc_tol=0.03, **kwargs):
if np.size(alpha) == 1 and alpha != 0:
k_params = self.exog.shape[1]
alpha = alpha * np.ones(k_params)
alpha_p = alpha
if start_params is None:
offset = getattr(self, "offset", 0) + getattr(self, "exposure", 0)
if np.size(offset) == 1 and offset == 0:
offset = None
model = self.model_main.__class__(self.endog, self.exog,
offset=offset)
start_params = model.fit_regularized(
start_params=start_params, method=method, maxiter=maxiter,
full_output=full_output, disp=0, callback=callback,
alpha=alpha_p, trim_mode=trim_mode,
auto_trim_tol=auto_trim_tol,
size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs).params
cntfit = super(CountModel, self).fit_regularized(
start_params=start_params, method=method, maxiter=maxiter,
full_output=full_output, disp=disp, callback=callback,
alpha=alpha, trim_mode=trim_mode, auto_trim_tol=auto_trim_tol,
size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs)
if method in ['l1', 'l1_cvxopt_cp']:
discretefit = self.result_class_reg(self, cntfit)
else:
raise TypeError(
"argument method == %s, which is not handled" % method)
return self.result_class_reg_wrapper(discretefit)
fit_regularized.__doc__ = DiscreteModel.fit_regularized.__doc__
def hessian(self, params):
"""
Generic Censored model Hessian matrix of the loglikelihood
Parameters
----------
params : array-like
The parameters of the model
Returns
-------
hess : ndarray, (k_vars, k_vars)
The Hessian, second derivative of loglikelihood function,
evaluated at `params`
Notes
-----
"""
return approx_hess(params, self.loglike)
class _RCensoredPoisson(_RCensoredGeneric):
__doc__ = """
Censored Poisson model for count data
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None,
exposure=None, missing='none', **kwargs):
super().__init__(endog, exog, offset=offset,
exposure=exposure,
missing=missing, **kwargs)
self.model_main = Poisson(np.zeros_like(self.endog), self.exog)
self.model_dist = None
self.result_class = TruncatedLFGenericResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
class _RCensoredGeneralizedPoisson(_RCensoredGeneric):
__doc__ = """
Censored Generalized Poisson model for count data
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None, p=2,
exposure=None, missing='none', **kwargs):
super().__init__(
endog, exog, offset=offset, exposure=exposure,
missing=missing, **kwargs)
self.model_main = GeneralizedPoisson(
np.zeros_like(self.endog), self.exog)
self.model_dist = None
self.result_class = TruncatedLFGenericResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
class _RCensoredNegativeBinomialP(_RCensoredGeneric):
__doc__ = """
Censored Negative Binomial model for count data
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None, p=2,
exposure=None, missing='none', **kwargs):
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
missing=missing,
**kwargs
)
self.model_main = NegativeBinomialP(np.zeros_like(self.endog),
self.exog,
p=p
)
self.model_dist = None
self.result_class = TruncatedLFGenericResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
class _RCensored(_RCensoredGeneric):
__doc__ = """
Censored model for count data
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
""" + base._missing_param_doc}
def __init__(self, endog, exog, model=Poisson,
distribution=truncatedpoisson, offset=None,
exposure=None, missing='none', **kwargs):
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
missing=missing,
**kwargs
)
self.model_main = model(np.zeros_like(self.endog), self.exog)
self.model_dist = distribution
# fix k_extra and exog_names
self.k_extra = k_extra = self.model_main.k_extra
if k_extra > 0:
self.exog_names.extend(self.model_main.exog_names[-k_extra:])
self.result_class = TruncatedLFGenericResults
self.result_class_wrapper = TruncatedLFGenericResultsWrapper
self.result_class_reg = L1TruncatedLFGenericResults
self.result_class_reg_wrapper = L1TruncatedLFGenericResultsWrapper
def _prob_nonzero(self, mu, params):
"""Probability that count is not zero
internal use in Censored model, will be refactored or removed
"""
prob_nz = self.model_main._prob_nonzero(mu, params)
return prob_nz
[docs]
class HurdleCountModel(CountModel):
__doc__ = """
Hurdle model for count data
.. versionadded:: 0.14.0
%(params)s
%(extra_params)s
Attributes
----------
endog : array
A reference to the endogenous response variable
exog : array
A reference to the exogenous design.
dist : string
Log-likelihood type of count model family. 'poisson' or 'negbin'
zerodist : string
Log-likelihood type of zero hurdle model family. 'poisson', 'negbin'
p : scalar
Define parameterization for count model.
Used when dist='negbin'.
pzero : scalar
Define parameterization parameter zero hurdle model family.
Used when zerodist='negbin'.
""" % {'params': base._model_params_doc,
'extra_params':
"""offset : array_like
Offset is added to the linear prediction with coefficient equal to 1.
exposure : array_like
Log(exposure) is added to the linear prediction with coefficient
equal to 1.
Notes
-----
The parameters in the NegativeBinomial zero model are not identified if
the predicted mean is constant. If there is no or only little variation in
the predicted mean, then convergence might fail, hessian might not be
invertible or parameter estimates will have large standard errors.
References
----------
not yet
""" + base._missing_param_doc}
def __init__(self, endog, exog, offset=None,
dist="poisson", zerodist="poisson",
p=2, pzero=2,
exposure=None, missing='none', **kwargs):
if (offset is not None) or (exposure is not None):
msg = "Offset and exposure are not yet implemented"
raise NotImplementedError(msg)
super().__init__(
endog,
exog,
offset=offset,
exposure=exposure,
missing=missing,
**kwargs
)
self.k_extra1 = 0
self.k_extra2 = 0
self._initialize(dist, zerodist, p, pzero)
self.result_class = HurdleCountResults
self.result_class_wrapper = HurdleCountResultsWrapper
self.result_class_reg = L1HurdleCountResults
self.result_class_reg_wrapper = L1HurdleCountResultsWrapper
def _initialize(self, dist, zerodist, p, pzero):
if (dist not in ["poisson", "negbin"] or
zerodist not in ["poisson", "negbin"]):
raise NotImplementedError('dist and zerodist must be "poisson",'
'"negbin"')
if zerodist == "poisson":
self.model1 = _RCensored(self.endog, self.exog, model=Poisson)
elif zerodist == "negbin":
self.model1 = _RCensored(self.endog, self.exog,
model=NegativeBinomialP)
self.k_extra1 += 1
if dist == "poisson":
self.model2 = TruncatedLFPoisson(self.endog, self.exog)
elif dist == "negbin":
self.model2 = TruncatedLFNegativeBinomialP(self.endog, self.exog,
p=p)
self.k_extra2 += 1
[docs]
def loglike(self, params):
"""
Loglikelihood of Generic Hurdle model
Parameters
----------
params : array-like
The parameters of the model.
Returns
-------
loglike : float
The log-likelihood function of the model evaluated at `params`.
See notes.
Notes
-----
"""
k = int((len(params) - self.k_extra1 - self.k_extra2) / 2
) + self.k_extra1
return (self.model1.loglike(params[:k]) +
self.model2.loglike(params[k:]))
[docs]
def fit(self, start_params=None, method='bfgs', maxiter=35,
full_output=1, disp=1, callback=None,
cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs):
if cov_type != "nonrobust":
raise ValueError("robust cov_type currently not supported")
results1 = self.model1.fit(
start_params=start_params,
method=method, maxiter=maxiter, disp=disp,
full_output=full_output, callback=lambda x: x,
**kwargs
)
results2 = self.model2.fit(
start_params=start_params,
method=method, maxiter=maxiter, disp=disp,
full_output=full_output, callback=lambda x: x,
**kwargs
)
result = deepcopy(results1)
result._results.model = self
result.mle_retvals['converged'] = [results1.mle_retvals['converged'],
results2.mle_retvals['converged']]
result._results.params = np.append(results1._results.params,
results2._results.params)
# TODO: the following should be in __init__ or initialize
result._results.df_model += results2._results.df_model
# this looks wrong attr does not exist, always 0
self.k_extra1 += getattr(results1._results, "k_extra", 0)
self.k_extra2 += getattr(results2._results, "k_extra", 0)
self.k_extra = (self.k_extra1 + self.k_extra2 + 1)
xnames1 = ["zm_" + name for name in self.model1.exog_names]
self.exog_names[:] = xnames1 + self.model2.exog_names
# fix up cov_params,
# we could use normalized cov_params directly, unless it's not used
from scipy.linalg import block_diag
result._results.normalized_cov_params = None
try:
cov1 = results1._results.cov_params()
cov2 = results2._results.cov_params()
result._results.normalized_cov_params = block_diag(cov1, cov2)
except ValueError as e:
if "need covariance" not in str(e):
# could be some other problem
raise
modelfit = self.result_class(self, result._results, results1, results2)
result = self.result_class_wrapper(modelfit)
return result
fit.__doc__ = DiscreteModel.fit.__doc__
[docs]
def predict(self, params, exog=None, exposure=None,
offset=None, which='mean', y_values=None):
"""
Predict response variable or other statistic given exogenous variables.
Parameters
----------
params : array_like
The parameters of the model.
exog : ndarray, optional
Explanatory variables for the main count model.
If ``exog`` is None, then the data from the model will be used.
exog_infl : ndarray, optional
Explanatory variables for the zero-inflation model.
``exog_infl`` has to be provided if ``exog`` was provided unless
``exog_infl`` in the model is only a constant.
offset : ndarray, optional
Offset is added to the linear predictor of the mean function with
coefficient equal to 1.
Default is zero if exog is not None, and the model offset if exog
is None.
exposure : ndarray, optional
Log(exposure) is added to the linear predictor with coefficient
equal to 1. If exposure is specified, then it will be logged by
the method. The user does not need to log it first.
Default is one if exog is is not None, and it is the model exposure
if exog is None.
which : str (optional)
Statitistic to predict. Default is 'mean'.
- 'mean' : the conditional expectation of endog E(y | x)
- 'mean-main' : mean parameter of truncated count model.
Note, this is not the mean of the truncated distribution.
- 'linear' : the linear predictor of the truncated count model.
- 'var' : returns the estimated variance of endog implied by the
model.
- 'prob-main' : probability of selecting the main model which is
the probability of observing a nonzero count P(y > 0 | x).
- 'prob-zero' : probability of observing a zero count. P(y=0 | x).
This is equal to is ``1 - prob-main``
- 'prob-trunc' : probability of truncation of the truncated count
model. This is the probability of observing a zero count implied
by the truncation model.
- 'mean-nonzero' : expected value conditional on having observation
larger than zero, E(y | X, y>0)
- 'prob' : probabilities of each count from 0 to max(endog), or
for y_values if those are provided. This is a multivariate
return (2-dim when predicting for several observations).
y_values : array_like
Values of the random variable endog at which pmf is evaluated.
Only used if ``which="prob"``
Returns
-------
predicted values
Notes
-----
'prob-zero' / 'prob-trunc' is the ratio of probabilities of observing
a zero count between hurdle model and the truncated count model.
If this ratio is larger than one, then the hurdle model has an inflated
number of zeros compared to the count model. If it is smaller than one,
then the number of zeros is deflated.
"""
which = which.lower() # make it case insensitive
no_exog = True if exog is None else False
exog, offset, exposure = self._get_predict_arrays(
exog=exog,
offset=offset,
exposure=exposure
)
exog_zero = None # not yet
if exog_zero is None:
if no_exog:
exog_zero = self.exog
else:
exog_zero = exog
k_zeros = int((len(params) - self.k_extra1 - self.k_extra2) / 2
) + self.k_extra1
params_zero = params[:k_zeros]
params_main = params[k_zeros:]
lin_pred = (np.dot(exog, params_main[:self.exog.shape[1]]) +
exposure + offset)
# this currently is mean_main, offset, exposure for zero part ?
mu1 = self.model1.predict(params_zero, exog=exog)
# prob that count model applies y>0 from zero model predict
prob_main = self.model1.model_main._prob_nonzero(mu1, params_zero)
prob_zero = (1 - prob_main)
mu2 = np.exp(lin_pred)
prob_ntrunc = self.model2.model_main._prob_nonzero(mu2, params_main)
if which == 'mean':
return prob_main * np.exp(lin_pred) / prob_ntrunc
elif which == 'mean-main':
return np.exp(lin_pred)
elif which == 'linear':
return lin_pred
elif which == 'mean-nonzero':
return np.exp(lin_pred) / prob_ntrunc
elif which == 'prob-zero':
return prob_zero
elif which == 'prob-main':
return prob_main
elif which == 'prob-trunc':
return 1 - prob_ntrunc
# not yet supported
elif which == 'var':
# generic computation using results from submodels
mu = np.exp(lin_pred)
mt, vt = self.model2._predict_mom_trunc0(params_main, mu)
var_ = prob_main * vt + prob_main * (1 - prob_main) * mt**2
return var_
elif which == 'prob':
probs_main = self.model2.predict(
params_main, exog, np.exp(exposure), offset, which="prob",
y_values=y_values)
probs_main *= prob_main[:, None]
probs_main[:, 0] = prob_zero
return probs_main
else:
raise ValueError('which = %s is not available' % which)
class TruncatedLFGenericResults(CountResults):
__doc__ = _discrete_results_docs % {
"one_line_description": "A results class for Generic Truncated",
"extra_attr": ""}
[docs]
class TruncatedLFPoissonResults(TruncatedLFGenericResults):
__doc__ = _discrete_results_docs % {
"one_line_description": "A results class for Truncated Poisson",
"extra_attr": ""}
@cache_readonly
def _dispersion_factor(self):
if self.model.trunc != 0:
msg = "dispersion is only available for zero-truncation"
raise NotImplementedError(msg)
mu = np.exp(self.predict(which='linear'))
return (1 - mu / (np.exp(mu) - 1))
[docs]
class TruncatedNegativeBinomialResults(TruncatedLFGenericResults):
__doc__ = _discrete_results_docs % {
"one_line_description":
"A results class for Truncated Negative Binomial",
"extra_attr": ""}
@cache_readonly
def _dispersion_factor(self):
if self.model.trunc != 0:
msg = "dispersion is only available for zero-truncation"
raise NotImplementedError(msg)
alpha = self.params[-1]
p = self.model.model_main.parameterization
mu = np.exp(self.predict(which='linear'))
return (1 - alpha * mu**(p-1) / (np.exp(mu**(p-1)) - 1))
class L1TruncatedLFGenericResults(L1CountResults, TruncatedLFGenericResults):
pass
class TruncatedLFGenericResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(TruncatedLFGenericResultsWrapper,
TruncatedLFGenericResults)
class L1TruncatedLFGenericResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(L1TruncatedLFGenericResultsWrapper,
L1TruncatedLFGenericResults)
[docs]
class HurdleCountResults(CountResults):
__doc__ = _discrete_results_docs % {
"one_line_description": "A results class for Hurdle model",
"extra_attr": ""}
def __init__(self, model, mlefit, results_zero, results_count,
cov_type='nonrobust', cov_kwds=None, use_t=None):
super().__init__(
model,
mlefit,
cov_type=cov_type,
cov_kwds=cov_kwds,
use_t=use_t,
)
self.results_zero = results_zero
self.results_count = results_count
# TODO: this is to fix df_resid, should be automatic but is not
self.df_resid = self.model.endog.shape[0] - len(self.params)
@cache_readonly
def llnull(self):
return (self.results_zero._results.llnull +
self.results_count._results.llnull)
@cache_readonly
def bse(self):
return np.append(self.results_zero.bse, self.results_count.bse)
class L1HurdleCountResults(L1CountResults, HurdleCountResults):
pass
class HurdleCountResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(HurdleCountResultsWrapper,
HurdleCountResults)
class L1HurdleCountResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(L1HurdleCountResultsWrapper,
L1HurdleCountResults)
Last update:
Jan 20, 2025