Source code for statsmodels.multivariate.manova
"""Multivariate analysis of variance
author: Yichuan Liu
"""
from statsmodels.compat.pandas import Substitution
import numpy as np
from statsmodels.base.model import Model
from statsmodels.formula._manager import FormulaManager
from .multivariate_ols import (
MultivariateTestResults,
_hypotheses_doc,
_multivariate_ols_fit,
_multivariate_ols_test,
)
__docformat__ = 'restructuredtext en'
[docs]
class MANOVA(Model):
"""
Multivariate Analysis of Variance
The implementation of MANOVA is based on multivariate regression and does
not assume that the explanatory variables are categorical. Any type of
variables as in regression is allowed.
Parameters
----------
endog : array_like
Dependent variables. A nobs x k_endog array where nobs is
the number of observations and k_endog is the number of dependent
variables.
exog : array_like
Independent variables. A nobs x k_exog array where nobs is the
number of observations and k_exog is the number of independent
variables. An intercept is not included by default and should be added
by the user. Models specified using a formula include an intercept by
default.
Attributes
----------
endog : ndarray
See Parameters.
exog : ndarray
See Parameters.
Notes
-----
MANOVA is used though the `mv_test` function, and `fit` is not used.
The ``from_formula`` interface is the recommended method to specify
a model and simplifies testing without needing to manually configure
the contrast matrices.
References
----------
.. [*] ftp://public.dhe.ibm.com/software/analytics/spss/documentation/
statistics/20.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
"""
_formula_max_endog = None
def __init__(self, endog, exog, missing="none", hasconst=None, **kwargs):
if len(endog.shape) == 1 or endog.shape[1] == 1:
raise ValueError(
"There must be more than one dependent variable" " to fit MANOVA!"
)
super().__init__(endog, exog, missing=missing, hasconst=hasconst, **kwargs)
self._fittedmod = _multivariate_ols_fit(self.endog, self.exog)
[docs]
def fit(self):
raise NotImplementedError('fit is not needed to use MANOVA. Call'
'mv_test directly on a MANOVA instance.')
[docs]
@Substitution(hypotheses_doc=_hypotheses_doc)
def mv_test(self, hypotheses=None, skip_intercept_test=False):
"""
Linear hypotheses testing
Parameters
----------
%(hypotheses_doc)s
skip_intercept_test : bool
If true, then testing the intercept is skipped, the model is not
changed.
Note: If a term has a numerically insignificant effect, then
an exception because of emtpy arrays may be raised. This can
happen for the intercept if the data has been demeaned.
Returns
-------
results: MultivariateTestResults
Notes
-----
Testing the linear hypotheses
L * params * M = 0
where `params` is the regression coefficient matrix for the
linear model y = x * params
If the model is not specified using the formula interfact, then the
hypotheses test each included exogenous variable, one at a time. In
most applications with categorical variables, the ``from_formula``
interface should be preferred when specifying a model since it
provides knowledge about the model when specifying the hypotheses.
"""
if hypotheses is None:
if (
hasattr(self, "data")
and self.data is not None
and hasattr(self.data, "model_spec")
):
# TODO: patsy migration
mgr = FormulaManager()
terms = mgr.get_term_name_slices(self.data.model_spec)
hypotheses = []
for key in terms:
if skip_intercept_test and (
key == "Intercept" or key == mgr.intercept_term
):
continue
L_contrast = np.eye(self.exog.shape[1])[terms[key], :]
test_name = str(key)
if key == mgr.intercept_term:
test_name = "Intercept"
hypotheses.append([test_name, L_contrast, None])
else:
hypotheses = []
for i in range(self.exog.shape[1]):
name = "x%d" % (i)
L = np.zeros([1, self.exog.shape[1]])
L[0, i] = 1
hypotheses.append([name, L, None])
results = _multivariate_ols_test(
hypotheses, self._fittedmod, self.exog_names, self.endog_names
)
return MultivariateTestResults(results, self.endog_names, self.exog_names)
Last update:
Dec 23, 2024