Source code for statsmodels.nonparametric._kernel_base
"""
Module containing the base object for multivariate kernel density and
regression, plus some utilities.
"""
import copy
import numpy as np
from scipy import optimize
from scipy.stats.mstats import mquantiles
try:
import joblib
has_joblib = True
except ImportError:
has_joblib = False
from . import kernels
kernel_func = dict(wangryzin=kernels.wang_ryzin,
aitchisonaitken=kernels.aitchison_aitken,
gaussian=kernels.gaussian,
aitchison_aitken_reg = kernels.aitchison_aitken_reg,
wangryzin_reg = kernels.wang_ryzin_reg,
gauss_convolution=kernels.gaussian_convolution,
wangryzin_convolution=kernels.wang_ryzin_convolution,
aitchisonaitken_convolution=kernels.aitchison_aitken_convolution,
gaussian_cdf=kernels.gaussian_cdf,
aitchisonaitken_cdf=kernels.aitchison_aitken_cdf,
wangryzin_cdf=kernels.wang_ryzin_cdf,
d_gaussian=kernels.d_gaussian,
tricube=kernels.tricube)
def _compute_min_std_IQR(data):
"""Compute minimum of std and IQR for each variable."""
s1 = np.std(data, axis=0)
q75 = mquantiles(data, 0.75, axis=0).data[0]
q25 = mquantiles(data, 0.25, axis=0).data[0]
s2 = (q75 - q25) / 1.349 # IQR
dispersion = np.minimum(s1, s2)
return dispersion
def _compute_subset(class_type, data, bw, co, do, n_cvars, ix_ord,
ix_unord, n_sub, class_vars, randomize, bound):
""""Compute bw on subset of data.
Called from ``GenericKDE._compute_efficient_*``.
Notes
-----
Needs to be outside the class in order for joblib to be able to pickle it.
"""
if randomize:
np.random.shuffle(data)
sub_data = data[:n_sub, :]
else:
sub_data = data[bound[0]:bound[1], :]
if class_type == 'KDEMultivariate':
from .kernel_density import KDEMultivariate
var_type = class_vars[0]
sub_model = KDEMultivariate(sub_data, var_type, bw=bw,
defaults=EstimatorSettings(efficient=False))
elif class_type == 'KDEMultivariateConditional':
from .kernel_density import KDEMultivariateConditional
k_dep, dep_type, indep_type = class_vars
endog = sub_data[:, :k_dep]
exog = sub_data[:, k_dep:]
sub_model = KDEMultivariateConditional(endog, exog, dep_type,
indep_type, bw=bw, defaults=EstimatorSettings(efficient=False))
elif class_type == 'KernelReg':
from .kernel_regression import KernelReg
var_type, k_vars, reg_type = class_vars
endog = _adjust_shape(sub_data[:, 0], 1)
exog = _adjust_shape(sub_data[:, 1:], k_vars)
sub_model = KernelReg(endog=endog, exog=exog, reg_type=reg_type,
var_type=var_type, bw=bw,
defaults=EstimatorSettings(efficient=False))
else:
raise ValueError("class_type not recognized, should be one of " \
"{KDEMultivariate, KDEMultivariateConditional, KernelReg}")
# Compute dispersion in next 4 lines
if class_type == 'KernelReg':
sub_data = sub_data[:, 1:]
dispersion = _compute_min_std_IQR(sub_data)
fct = dispersion * n_sub**(-1. / (n_cvars + co))
fct[ix_unord] = n_sub**(-2. / (n_cvars + do))
fct[ix_ord] = n_sub**(-2. / (n_cvars + do))
sample_scale_sub = sub_model.bw / fct #TODO: check if correct
bw_sub = sub_model.bw
return sample_scale_sub, bw_sub
class GenericKDE :
"""
Base class for density estimation and regression KDE classes.
"""
def _compute_bw(self, bw):
"""
Computes the bandwidth of the data.
Parameters
----------
bw : {array_like, str}
If array_like: user-specified bandwidth.
If a string, should be one of:
- cv_ml: cross validation maximum likelihood
- normal_reference: normal reference rule of thumb
- cv_ls: cross validation least squares
Notes
-----
The default values for bw is 'normal_reference'.
"""
if bw is None:
bw = 'normal_reference'
if not isinstance(bw, str):
self._bw_method = "user-specified"
res = np.asarray(bw)
else:
# The user specified a bandwidth selection method
self._bw_method = bw
# Workaround to avoid instance methods in __dict__
if bw == 'normal_reference':
bwfunc = self._normal_reference
elif bw == 'cv_ml':
bwfunc = self._cv_ml
else: # bw == 'cv_ls'
bwfunc = self._cv_ls
res = bwfunc()
return res
def _compute_dispersion(self, data):
"""
Computes the measure of dispersion.
The minimum of the standard deviation and interquartile range / 1.349
Notes
-----
Reimplemented in `KernelReg`, because the first column of `data` has to
be removed.
References
----------
See the user guide for the np package in R.
In the notes on bwscaling option in npreg, npudens, npcdens there is
a discussion on the measure of dispersion
"""
return _compute_min_std_IQR(data)
def _get_class_vars_type(self):
"""Helper method to be able to pass needed vars to _compute_subset.
Needs to be implemented by subclasses."""
pass
def _compute_efficient(self, bw):
"""
Computes the bandwidth by estimating the scaling factor (c)
in n_res resamples of size ``n_sub`` (in `randomize` case), or by
dividing ``nobs`` into as many ``n_sub`` blocks as needed (if
`randomize` is False).
References
----------
See p.9 in socserv.mcmaster.ca/racine/np_faq.pdf
"""
if bw is None:
self._bw_method = 'normal_reference'
if isinstance(bw, str):
self._bw_method = bw
else:
self._bw_method = "user-specified"
return bw
nobs = self.nobs
n_sub = self.n_sub
data = copy.deepcopy(self.data)
n_cvars = self.data_type.count('c')
co = 4 # 2*order of continuous kernel
do = 4 # 2*order of discrete kernel
_, ix_ord, ix_unord = _get_type_pos(self.data_type)
# Define bounds for slicing the data
if self.randomize:
# randomize chooses blocks of size n_sub, independent of nobs
bounds = [None] * self.n_res
else:
bounds = [(i * n_sub, (i+1) * n_sub) for i in range(nobs // n_sub)]
if nobs % n_sub > 0:
bounds.append((nobs - nobs % n_sub, nobs))
n_blocks = self.n_res if self.randomize else len(bounds)
sample_scale = np.empty((n_blocks, self.k_vars))
only_bw = np.empty((n_blocks, self.k_vars))
class_type, class_vars = self._get_class_vars_type()
if has_joblib:
# `res` is a list of tuples (sample_scale_sub, bw_sub)
res = joblib.Parallel(n_jobs=self.n_jobs)(
joblib.delayed(_compute_subset)(
class_type, data, bw, co, do, n_cvars, ix_ord, ix_unord, \
n_sub, class_vars, self.randomize, bounds[i]) \
for i in range(n_blocks))
else:
res = []
for i in range(n_blocks):
res.append(_compute_subset(class_type, data, bw, co, do,
n_cvars, ix_ord, ix_unord, n_sub,
class_vars, self.randomize,
bounds[i]))
for i in range(n_blocks):
sample_scale[i, :] = res[i][0]
only_bw[i, :] = res[i][1]
s = self._compute_dispersion(data)
order_func = np.median if self.return_median else np.mean
m_scale = order_func(sample_scale, axis=0)
# TODO: Check if 1/5 is correct in line below!
bw = m_scale * s * nobs**(-1. / (n_cvars + co))
bw[ix_ord] = m_scale[ix_ord] * nobs**(-2./ (n_cvars + do))
bw[ix_unord] = m_scale[ix_unord] * nobs**(-2./ (n_cvars + do))
if self.return_only_bw:
bw = np.median(only_bw, axis=0)
return bw
def _set_defaults(self, defaults):
"""Sets the default values for the efficient estimation"""
self.n_res = defaults.n_res
self.n_sub = defaults.n_sub
self.randomize = defaults.randomize
self.return_median = defaults.return_median
self.efficient = defaults.efficient
self.return_only_bw = defaults.return_only_bw
self.n_jobs = defaults.n_jobs
def _normal_reference(self):
"""
Returns Scott's normal reference rule of thumb bandwidth parameter.
Notes
-----
See p.13 in [2] for an example and discussion. The formula for the
bandwidth is
.. math:: h = 1.06n^{-1/(4+q)}
where ``n`` is the number of observations and ``q`` is the number of
variables.
"""
X = np.std(self.data, axis=0)
return 1.06 * X * self.nobs ** (- 1. / (4 + self.data.shape[1]))
def _set_bw_bounds(self, bw):
"""
Sets bandwidth lower bound to effectively zero )1e-10), and for
discrete values upper bound to 1.
"""
bw[bw < 0] = 1e-10
_, ix_ord, ix_unord = _get_type_pos(self.data_type)
bw[ix_ord] = np.minimum(bw[ix_ord], 1.)
bw[ix_unord] = np.minimum(bw[ix_unord], 1.)
return bw
def _cv_ml(self):
r"""
Returns the cross validation maximum likelihood bandwidth parameter.
Notes
-----
For more details see p.16, 18, 27 in Ref. [1] (see module docstring).
Returns the bandwidth estimate that maximizes the leave-out-out
likelihood. The leave-one-out log likelihood function is:
.. math:: \ln L=\sum_{i=1}^{n}\ln f_{-i}(X_{i})
The leave-one-out kernel estimator of :math:`f_{-i}` is:
.. math:: f_{-i}(X_{i})=\frac{1}{(n-1)h}
\sum_{j=1,j\neq i}K_{h}(X_{i},X_{j})
where :math:`K_{h}` represents the Generalized product kernel
estimator:
.. math:: K_{h}(X_{i},X_{j})=\prod_{s=1}^
{q}h_{s}^{-1}k\left(\frac{X_{is}-X_{js}}{h_{s}}\right)
"""
# the initial value for the optimization is the normal_reference
h0 = self._normal_reference()
bw = optimize.fmin(self.loo_likelihood, x0=h0, args=(np.log, ),
maxiter=1e3, maxfun=1e3, disp=0, xtol=1e-3)
bw = self._set_bw_bounds(bw) # bound bw if necessary
return bw
def _cv_ls(self):
r"""
Returns the cross-validation least squares bandwidth parameter(s).
Notes
-----
For more details see pp. 16, 27 in Ref. [1] (see module docstring).
Returns the value of the bandwidth that maximizes the integrated mean
square error between the estimated and actual distribution. The
integrated mean square error (IMSE) is given by:
.. math:: \int\left[\hat{f}(x)-f(x)\right]^{2}dx
This is the general formula for the IMSE. The IMSE differs for
conditional (``KDEMultivariateConditional``) and unconditional
(``KDEMultivariate``) kernel density estimation.
"""
h0 = self._normal_reference()
bw = optimize.fmin(self.imse, x0=h0, maxiter=1e3, maxfun=1e3, disp=0,
xtol=1e-3)
bw = self._set_bw_bounds(bw) # bound bw if necessary
return bw
def loo_likelihood(self):
raise NotImplementedError
[docs]
class EstimatorSettings:
"""
Object to specify settings for density estimation or regression.
`EstimatorSettings` has several properties related to how bandwidth
estimation for the `KDEMultivariate`, `KDEMultivariateConditional`,
`KernelReg` and `CensoredKernelReg` classes behaves.
Parameters
----------
efficient : bool, optional
If True, the bandwidth estimation is to be performed
efficiently -- by taking smaller sub-samples and estimating
the scaling factor of each subsample. This is useful for large
samples (nobs >> 300) and/or multiple variables (k_vars > 3).
If False (default), all data is used at the same time.
randomize : bool, optional
If True, the bandwidth estimation is to be performed by
taking `n_res` random resamples (with replacement) of size `n_sub` from
the full sample. If set to False (default), the estimation is
performed by slicing the full sample in sub-samples of size `n_sub` so
that all samples are used once.
n_sub : int, optional
Size of the sub-samples. Default is 50.
n_res : int, optional
The number of random re-samples used to estimate the bandwidth.
Only has an effect if ``randomize == True``. Default value is 25.
return_median : bool, optional
If True (default), the estimator uses the median of all scaling factors
for each sub-sample to estimate the bandwidth of the full sample.
If False, the estimator uses the mean.
return_only_bw : bool, optional
If True, the estimator is to use the bandwidth and not the
scaling factor. This is *not* theoretically justified.
Should be used only for experimenting.
n_jobs : int, optional
The number of jobs to use for parallel estimation with
``joblib.Parallel``. Default is -1, meaning ``n_cores - 1``, with
``n_cores`` the number of available CPU cores.
See the `joblib documentation
<https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html>`_ for more details.
Examples
--------
>>> settings = EstimatorSettings(randomize=True, n_jobs=3)
>>> k_dens = KDEMultivariate(data, var_type, defaults=settings)
"""
def __init__(self, efficient=False, randomize=False, n_res=25, n_sub=50,
return_median=True, return_only_bw=False, n_jobs=-1):
self.efficient = efficient
self.randomize = randomize
self.n_res = n_res
self.n_sub = n_sub
self.return_median = return_median
self.return_only_bw = return_only_bw # TODO: remove this?
self.n_jobs = n_jobs
class LeaveOneOut:
"""
Generator to give leave-one-out views on X.
Parameters
----------
X : array_like
2-D array.
Examples
--------
>>> X = np.random.normal(0, 1, [10,2])
>>> loo = LeaveOneOut(X)
>>> for x in loo:
... print x
Notes
-----
A little lighter weight than sklearn LOO. We do not need test index.
Also passes views on X, not the index.
"""
def __init__(self, X):
self.X = np.asarray(X)
def __iter__(self):
X = self.X
nobs, k_vars = np.shape(X)
for i in range(nobs):
index = np.ones(nobs, dtype=bool)
index[i] = False
yield X[index, :]
def _get_type_pos(var_type):
ix_cont = np.array([c == 'c' for c in var_type])
ix_ord = np.array([c == 'o' for c in var_type])
ix_unord = np.array([c == 'u' for c in var_type])
return ix_cont, ix_ord, ix_unord
def _adjust_shape(dat, k_vars):
""" Returns an array of shape (nobs, k_vars) for use with `gpke`."""
dat = np.asarray(dat)
if dat.ndim > 2:
dat = np.squeeze(dat)
if dat.ndim == 1 and k_vars > 1: # one obs many vars
nobs = 1
elif dat.ndim == 1 and k_vars == 1: # one obs one var
nobs = len(dat)
else:
if np.shape(dat)[0] == k_vars and np.shape(dat)[1] != k_vars:
dat = dat.T
nobs = np.shape(dat)[0] # ndim >1 so many obs many vars
dat = np.reshape(dat, (nobs, k_vars))
return dat
def gpke(bw, data, data_predict, var_type, ckertype='gaussian',
okertype='wangryzin', ukertype='aitchisonaitken', tosum=True):
r"""
Returns the non-normalized Generalized Product Kernel Estimator
Parameters
----------
bw : 1-D ndarray
The user-specified bandwidth parameters.
data : 1D or 2-D ndarray
The training data.
data_predict : 1-D ndarray
The evaluation points at which the kernel estimation is performed.
var_type : str, optional
The variable type (continuous, ordered, unordered).
ckertype : str, optional
The kernel used for the continuous variables.
okertype : str, optional
The kernel used for the ordered discrete variables.
ukertype : str, optional
The kernel used for the unordered discrete variables.
tosum : bool, optional
Whether or not to sum the calculated array of densities. Default is
True.
Returns
-------
dens : array_like
The generalized product kernel density estimator.
Notes
-----
The formula for the multivariate kernel estimator for the pdf is:
.. math:: f(x)=\frac{1}{nh_{1}...h_{q}}\sum_{i=1}^
{n}K\left(\frac{X_{i}-x}{h}\right)
where
.. math:: K\left(\frac{X_{i}-x}{h}\right) =
k\left( \frac{X_{i1}-x_{1}}{h_{1}}\right)\times
k\left( \frac{X_{i2}-x_{2}}{h_{2}}\right)\times...\times
k\left(\frac{X_{iq}-x_{q}}{h_{q}}\right)
"""
kertypes = dict(c=ckertype, o=okertype, u=ukertype)
#Kval = []
#for ii, vtype in enumerate(var_type):
# func = kernel_func[kertypes[vtype]]
# Kval.append(func(bw[ii], data[:, ii], data_predict[ii]))
#Kval = np.column_stack(Kval)
Kval = np.empty(data.shape)
for ii, vtype in enumerate(var_type):
func = kernel_func[kertypes[vtype]]
Kval[:, ii] = func(bw[ii], data[:, ii], data_predict[ii])
iscontinuous = np.array([c == 'c' for c in var_type])
dens = Kval.prod(axis=1) / np.prod(bw[iscontinuous])
if tosum:
return dens.sum(axis=0)
else:
return dens
Last update:
Nov 14, 2024