Source code for statsmodels.sandbox.distributions.transformed

## copied from nonlinear_transform_gen.py

''' A class for the distribution of a non-linear monotonic transformation of a continuous random variable

simplest usage:
example: create log-gamma distribution, i.e. y = log(x),
            where x is gamma distributed (also available in scipy.stats)
    loggammaexpg = Transf_gen(stats.gamma, np.log, np.exp)

example: what is the distribution of the discount factor y=1/(1+x)
            where interest rate x is normally distributed with N(mux,stdx**2)')?
            (just to come up with a story that implies a nice transformation)
    invnormalg = Transf_gen(stats.norm, inversew, inversew_inv, decr=True, a=-np.inf)

This class does not work well for distributions with difficult shapes,
    e.g. 1/x where x is standard normal, because of the singularity and jump at zero.

Note: I'm working from my version of scipy.stats.distribution.
      But this script runs under scipy 0.6.0 (checked with numpy: 1.2.0rc2 and python 2.4)

This is not yet thoroughly tested, polished or optimized

TODO:
  * numargs handling is not yet working properly, numargs needs to be specified (default = 0 or 1)
  * feeding args and kwargs to underlying distribution is untested and incomplete
  * distinguish args and kwargs for the transformed and the underlying distribution
    - currently all args and no kwargs are transmitted to underlying distribution
    - loc and scale only work for transformed, but not for underlying distribution
    - possible to separate args for transformation and underlying distribution parameters

  * add _rvs as method, will be faster in many cases


Created on Tuesday, October 28, 2008, 12:40:37 PM
Author: josef-pktd
License: BSD

'''
from scipy import stats
from scipy.stats import distributions
import numpy as np


def get_u_argskwargs(**kwargs):
    # Todo: What's this? wrong spacing, used in Transf_gen TransfTwo_gen
    u_kwargs = {k.replace('u_', '', 1): v for k, v in kwargs.items()
                    if k.startswith('u_')}
    u_args = u_kwargs.pop('u_args', None)
    return u_args, u_kwargs


[docs] class Transf_gen(distributions.rv_continuous): '''a class for non-linear monotonic transformation of a continuous random variable ''' def __init__(self, kls, func, funcinv, *args, **kwargs): # print(args # print(kwargs self.func = func self.funcinv = funcinv # explicit for self.__dict__.update(kwargs) # need to set numargs because inspection does not work self.numargs = kwargs.pop('numargs', 0) # print(self.numargs name = kwargs.pop('name', 'transfdist') longname = kwargs.pop('longname', 'Non-linear transformed distribution') extradoc = kwargs.pop('extradoc', None) a = kwargs.pop('a', -np.inf) b = kwargs.pop('b', np.inf) self.decr = kwargs.pop('decr', False) # defines whether it is a decreasing (True) # or increasing (False) monotonic transformation self.u_args, self.u_kwargs = get_u_argskwargs(**kwargs) self.kls = kls # (self.u_args, self.u_kwargs) # possible to freeze the underlying distribution super().__init__(a=a, b=b, name=name, shapes=kls.shapes, longname=longname, # extradoc = extradoc ) def _cdf(self, x, *args, **kwargs): # print(args if not self.decr: return self.kls._cdf(self.funcinv(x), *args, **kwargs) # note scipy _cdf only take *args not *kwargs else: return 1.0 - self.kls._cdf(self.funcinv(x), *args, **kwargs) def _ppf(self, q, *args, **kwargs): if not self.decr: return self.func(self.kls._ppf(q, *args, **kwargs)) else: return self.func(self.kls._ppf(1 - q, *args, **kwargs))
def inverse(x): return np.divide(1.0, x) mux, stdx = 0.05, 0.1 mux, stdx = 9.0, 1.0 def inversew(x): return 1.0 / (1 + mux + x * stdx) def inversew_inv(x): return (1.0 / x - 1.0 - mux) / stdx # .np.divide(1.0,x)-10 def identit(x): return x invdnormalg = Transf_gen(stats.norm, inversew, inversew_inv, decr=True, # a=-np.inf, numargs=0, name='discf', longname='normal-based discount factor', # extradoc = '\ndistribution of discount factor y=1/(1+x)) with x N(0.05,0.1**2)' ) lognormalg = Transf_gen(stats.norm, np.exp, np.log, numargs=2, a=0, name='lnnorm', longname='Exp transformed normal', # extradoc = '\ndistribution of y = exp(x), with x standard normal' # 'precision for moment andstats is not very high, 2-3 decimals' ) loggammaexpg = Transf_gen(stats.gamma, np.log, np.exp, numargs=1) ## copied form nonlinear_transform_short.py '''univariate distribution of a non-linear monotonic transformation of a random variable '''
[docs] class ExpTransf_gen(distributions.rv_continuous): '''Distribution based on log/exp transformation the constructor can be called with a distribution class and generates the distribution of the transformed random variable ''' def __init__(self, kls, *args, **kwargs): # print(args # print(kwargs # explicit for self.__dict__.update(kwargs) if 'numargs' in kwargs: self.numargs = kwargs['numargs'] else: self.numargs = 1 if 'name' in kwargs: name = kwargs['name'] else: name = 'Log transformed distribution' if 'a' in kwargs: a = kwargs['a'] else: a = 0 super().__init__(a=a, name=name) self.kls = kls def _cdf(self, x, *args): # print(args return self.kls._cdf(np.log(x), *args) def _ppf(self, q, *args): return np.exp(self.kls._ppf(q, *args))
[docs] class LogTransf_gen(distributions.rv_continuous): '''Distribution based on log/exp transformation the constructor can be called with a distribution class and generates the distribution of the transformed random variable ''' def __init__(self, kls, *args, **kwargs): # explicit for self.__dict__.update(kwargs) if 'numargs' in kwargs: self.numargs = kwargs['numargs'] else: self.numargs = 1 if 'name' in kwargs: name = kwargs['name'] else: name = 'Log transformed distribution' if 'a' in kwargs: a = kwargs['a'] else: a = 0 super().__init__(a=a, name=name) self.kls = kls def _cdf(self, x, *args): # print(args return self.kls._cdf(np.exp(x), *args) def _ppf(self, q, *args): return np.log(self.kls._ppf(q, *args))
def examples_transf(): ##lognormal = ExpTransf(a=0.0, xa=-10.0, name = 'Log transformed normal') ##print(lognormal.cdf(1) ##print(stats.lognorm.cdf(1,1) ##print(lognormal.stats() ##print(stats.lognorm.stats(1) ##print(lognormal.rvs(size=10) print('Results for lognormal') lognormalg = ExpTransf_gen(stats.norm, a=0, name='Log transformed normal general') print(lognormalg.cdf(1)) print(stats.lognorm.cdf(1, 1)) print(lognormalg.stats()) print(stats.lognorm.stats(1)) print(lognormalg.rvs(size=5)) ##print('Results for loggamma' ##loggammag = ExpTransf_gen(stats.gamma) ##print(loggammag._cdf(1,10) ##print(stats.loggamma.cdf(1,10) print('Results for expgamma') loggammaexpg = LogTransf_gen(stats.gamma) print(loggammaexpg._cdf(1, 10)) print(stats.loggamma.cdf(1, 10)) print(loggammaexpg._cdf(2, 15)) print(stats.loggamma.cdf(2, 15)) # this requires change in scipy.stats.distribution # print(loggammaexpg.cdf(1,10) print('Results for loglaplace') loglaplaceg = LogTransf_gen(stats.laplace) print(loglaplaceg._cdf(2, 10)) print(stats.loglaplace.cdf(2, 10)) loglaplaceexpg = ExpTransf_gen(stats.laplace) print(loglaplaceexpg._cdf(2, 10)) ## copied from transformtwo.py ''' Created on Apr 28, 2009 @author: Josef Perktold ''' ''' A class for the distribution of a non-linear u-shaped or hump shaped transformation of a continuous random variable This is a companion to the distributions of non-linear monotonic transformation to the case when the inverse mapping is a 2-valued correspondence, for example for absolute value or square simplest usage: example: create squared distribution, i.e. y = x**2, where x is normal or t distributed This class does not work well for distributions with difficult shapes, e.g. 1/x where x is standard normal, because of the singularity and jump at zero. This verifies for normal - chi2, normal - halfnorm, foldnorm, and t - F TODO: * numargs handling is not yet working properly, numargs needs to be specified (default = 0 or 1) * feeding args and kwargs to underlying distribution works in t distribution example * distinguish args and kwargs for the transformed and the underlying distribution - currently all args and no kwargs are transmitted to underlying distribution - loc and scale only work for transformed, but not for underlying distribution - possible to separate args for transformation and underlying distribution parameters * add _rvs as method, will be faster in many cases '''
[docs] class TransfTwo_gen(distributions.rv_continuous): '''Distribution based on a non-monotonic (u- or hump-shaped transformation) the constructor can be called with a distribution class, and functions that define the non-linear transformation. and generates the distribution of the transformed random variable Note: the transformation, it's inverse and derivatives need to be fully specified: func, funcinvplus, funcinvminus, derivplus, derivminus. Currently no numerical derivatives or inverse are calculated This can be used to generate distribution instances similar to the distributions in scipy.stats. ''' # a class for non-linear non-monotonic transformation of a continuous random variable def __init__(self, kls, func, funcinvplus, funcinvminus, derivplus, derivminus, *args, **kwargs): # print(args # print(kwargs self.func = func self.funcinvplus = funcinvplus self.funcinvminus = funcinvminus self.derivplus = derivplus self.derivminus = derivminus # explicit for self.__dict__.update(kwargs) # need to set numargs because inspection does not work self.numargs = kwargs.pop('numargs', 0) # print(self.numargs name = kwargs.pop('name', 'transfdist') longname = kwargs.pop('longname', 'Non-linear transformed distribution') extradoc = kwargs.pop('extradoc', None) a = kwargs.pop('a', -np.inf) # attached to self in super b = kwargs.pop('b', np.inf) # self.a, self.b would be overwritten self.shape = kwargs.pop('shape', False) # defines whether it is a `u` shaped or `hump' shaped # transformation self.u_args, self.u_kwargs = get_u_argskwargs(**kwargs) self.kls = kls # (self.u_args, self.u_kwargs) # possible to freeze the underlying distribution super().__init__(a=a, b=b, name=name, shapes=kls.shapes, longname=longname, # extradoc = extradoc ) def _rvs(self, *args): self.kls._size = self._size # size attached to self, not function argument return self.func(self.kls._rvs(*args)) def _pdf(self, x, *args, **kwargs): # print(args if self.shape == 'u': signpdf = 1 elif self.shape == 'hump': signpdf = -1 else: raise ValueError('shape can only be `u` or `hump`') return signpdf * (self.derivplus(x) * self.kls._pdf(self.funcinvplus(x), *args, **kwargs) - self.derivminus(x) * self.kls._pdf(self.funcinvminus(x), *args, **kwargs)) # note scipy _cdf only take *args not *kwargs def _cdf(self, x, *args, **kwargs): # print(args if self.shape == 'u': return self.kls._cdf(self.funcinvplus(x), *args, **kwargs) - \ self.kls._cdf(self.funcinvminus(x), *args, **kwargs) # note scipy _cdf only take *args not *kwargs else: return 1.0 - self._sf(x, *args, **kwargs) def _sf(self, x, *args, **kwargs): # print(args if self.shape == 'hump': return self.kls._cdf(self.funcinvplus(x), *args, **kwargs) - \ self.kls._cdf(self.funcinvminus(x), *args, **kwargs) # note scipy _cdf only take *args not *kwargs else: return 1.0 - self._cdf(x, *args, **kwargs) def _munp(self, n, *args, **kwargs): return self._mom0_sc(n, *args)
# ppf might not be possible in general case? # should be possible in symmetric case # def _ppf(self, q, *args, **kwargs): # if self.shape == 'u': # return self.func(self.kls._ppf(q,*args, **kwargs)) # elif self.shape == 'hump': # return self.func(self.kls._ppf(1-q,*args, **kwargs)) # TODO: rename these functions to have unique names
[docs] class SquareFunc: '''class to hold quadratic function with inverse function and derivative using instance methods instead of class methods, if we want extension to parametrized function '''
[docs] def inverseplus(self, x): return np.sqrt(x)
[docs] def inverseminus(self, x): return 0.0 - np.sqrt(x)
[docs] def derivplus(self, x): return 0.5 / np.sqrt(x)
[docs] def derivminus(self, x): return 0.0 - 0.5 / np.sqrt(x)
[docs] def squarefunc(self, x): return np.power(x, 2)
sqfunc = SquareFunc() squarenormalg = TransfTwo_gen(stats.norm, sqfunc.squarefunc, sqfunc.inverseplus, sqfunc.inverseminus, sqfunc.derivplus, sqfunc.derivminus, shape='u', a=0.0, b=np.inf, numargs=0, name='squarenorm', longname='squared normal distribution', # extradoc = '\ndistribution of the square of a normal random variable' +\ # ' y=x**2 with x N(0.0,1)' ) # u_loc=l, u_scale=s) squaretg = TransfTwo_gen(stats.t, sqfunc.squarefunc, sqfunc.inverseplus, sqfunc.inverseminus, sqfunc.derivplus, sqfunc.derivminus, shape='u', a=0.0, b=np.inf, numargs=1, name='squarenorm', longname='squared t distribution', # extradoc = '\ndistribution of the square of a t random variable' +\ # ' y=x**2 with x t(dof,0.0,1)' ) def inverseplus(x): return np.sqrt(-x) def inverseminus(x): return 0.0 - np.sqrt(-x) def derivplus(x): return 0.0 - 0.5 / np.sqrt(-x) def derivminus(x): return 0.5 / np.sqrt(-x) def negsquarefunc(x): return -np.power(x, 2) negsquarenormalg = TransfTwo_gen(stats.norm, negsquarefunc, inverseplus, inverseminus, derivplus, derivminus, shape='hump', a=-np.inf, b=0.0, numargs=0, name='negsquarenorm', longname='negative squared normal distribution', # extradoc = '\ndistribution of the negative square of a normal random variable' +\ # ' y=-x**2 with x N(0.0,1)' ) # u_loc=l, u_scale=s) def inverseplus(x): return x def inverseminus(x): return 0.0 - x def derivplus(x): return 1.0 def derivminus(x): return 0.0 - 1.0 def absfunc(x): return np.abs(x) absnormalg = TransfTwo_gen(stats.norm, np.abs, inverseplus, inverseminus, derivplus, derivminus, shape='u', a=0.0, b=np.inf, numargs=0, name='absnorm', longname='absolute of normal distribution', # extradoc = '\ndistribution of the absolute value of a normal random variable' +\ # ' y=abs(x) with x N(0,1)' )

Last update: Nov 14, 2024