Source code for statsmodels.sandbox.tsa.movstat

'''using scipy signal and numpy correlate to calculate some time series
statistics

original developer notes

see also scikits.timeseries  (movstat is partially inspired by it)
added 2009-08-29
timeseries moving stats are in c, autocorrelation similar to here
I thought I saw moving stats somewhere in python, maybe not)


TODO

moving statistics
- filters do not handle boundary conditions nicely (correctly ?)
e.g. minimum order filter uses 0 for out of bounds value
-> append and prepend with last resp. first value
- enhance for nd arrays, with axis = 0



Note: Equivalence for 1D signals
>>> np.all(signal.correlate(x,[1,1,1],'valid')==np.correlate(x,[1,1,1]))
True
>>> np.all(ndimage.filters.correlate(x,[1,1,1], origin = -1)[:-3+1]==np.correlate(x,[1,1,1]))
True

# multidimensional, but, it looks like it uses common filter across time series, no VAR
ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)
ndimage.filters.correlate(x,[1,1,1],origin = 1))
ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \
origin = 1)

>>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)[0]==\
ndimage.filters.correlate(x,[1,1,1],origin = 1))
True
>>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), \
origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1))


update
2009-09-06: cosmetic changes, rearrangements
'''

import numpy as np
from scipy import signal

from numpy.testing import assert_array_equal, assert_array_almost_equal


def expandarr(x,k):
    #make it work for 2D or nD with axis
    kadd = k
    if np.ndim(x) == 2:
        kadd = (kadd, np.shape(x)[1])
    return np.r_[np.ones(kadd)*x[0],x,np.ones(kadd)*x[-1]]

[docs] def movorder(x, order = 'med', windsize=3, lag='lagged'): '''moving order statistics Parameters ---------- x : ndarray time series data order : float or 'med', 'min', 'max' which order statistic to calculate windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- filtered array ''' #if windsize is even should it raise ValueError if lag == 'lagged': lead = windsize//2 elif lag == 'centered': lead = 0 elif lag == 'leading': lead = -windsize//2 +1 else: raise ValueError if np.isfinite(order): #if np.isnumber(order): ord = order # note: ord is a builtin function elif order == 'med': ord = (windsize - 1)/2 elif order == 'min': ord = 0 elif order == 'max': ord = windsize - 1 else: raise ValueError #return signal.order_filter(x,np.ones(windsize),ord)[:-lead] xext = expandarr(x, windsize) #np.r_[np.ones(windsize)*x[0],x,np.ones(windsize)*x[-1]] return signal.order_filter(xext,np.ones(windsize),ord)[windsize-lead:-(windsize+lead)]
def check_movorder(): '''graphical test for movorder''' import matplotlib.pylab as plt x = np.arange(1,10) xo = movorder(x, order='max') assert_array_equal(xo, x) x = np.arange(10,1,-1) xo = movorder(x, order='min') assert_array_equal(xo, x) assert_array_equal(movorder(x, order='min', lag='centered')[:-1], x[1:]) tt = np.linspace(0,2*np.pi,15) x = np.sin(tt) + 1 xo = movorder(x, order='max') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max lagged') xo = movorder(x, order='max', lag='centered') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max centered') xo = movorder(x, order='max', lag='leading') plt.figure() plt.plot(tt,x,'.-',tt,xo,'.-') plt.title('moving max leading') # identity filter ##>>> signal.order_filter(x,np.ones(1),0) ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9.]) # median filter ##signal.medfilt(np.sin(x), kernel_size=3) ##>>> plt.figure() ##<matplotlib.figure.Figure object at 0x069BBB50> ##>>> x=np.linspace(0,3,100);plt.plot(x,np.sin(x),x,signal.medfilt(np.sin(x), kernel_size=3)) # remove old version ##def movmeanvar(x, windowsize=3, valid='same'): ## ''' ## this should also work along axis or at least for columns ## ''' ## n = x.shape[0] ## x = expandarr(x, windowsize - 1) ## takeslice = slice(windowsize-1, n + windowsize-1) ## avgkern = (np.ones(windowsize)/float(windowsize)) ## m = np.correlate(x, avgkern, 'same')#[takeslice] ## print(m.shape) ## print(x.shape) ## xm = x - m ## v = np.correlate(x*x, avgkern, 'same') - m**2 ## v1 = np.correlate(xm*xm, avgkern, valid) #not correct for var of window ###>>> np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')-np.correlate(xm*xm,np.array([1,1,1])/3.0,'valid')**2 ## return m[takeslice], v[takeslice], v1
[docs] def movmean(x, windowsize=3, lag='lagged'): '''moving window mean Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving mean, with same shape as x Notes ----- for leading and lagging the data array x is extended by the closest value of the array ''' return movmoment(x, 1, windowsize=windowsize, lag=lag)
[docs] def movvar(x, windowsize=3, lag='lagged'): '''moving window variance Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray moving variance, with same shape as x ''' m1 = movmoment(x, 1, windowsize=windowsize, lag=lag) m2 = movmoment(x, 2, windowsize=windowsize, lag=lag) return m2 - m1*m1
[docs] def movmoment(x, k, windowsize=3, lag='lagged'): '''non-central moment Parameters ---------- x : ndarray time series data windsize : int window size lag : 'lagged', 'centered', or 'leading' location of window relative to current position Returns ------- mk : ndarray k-th moving non-central moment, with same shape as x Notes ----- If data x is 2d, then moving moment is calculated for each column. ''' windsize = windowsize #if windsize is even should it raise ValueError if lag == 'lagged': #lead = -0 + windsize #windsize//2 lead = -0# + (windsize-1) + windsize//2 sl = slice((windsize-1) or None, -2*(windsize-1) or None) elif lag == 'centered': lead = -windsize//2 #0#-1 #+ #(windsize-1) sl = slice((windsize-1)+windsize//2 or None, -(windsize-1)-windsize//2 or None) elif lag == 'leading': #lead = -windsize +1#+1 #+ (windsize-1)#//2 +1 lead = -windsize +2 #-windsize//2 +1 sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) else: raise ValueError avgkern = (np.ones(windowsize)/float(windowsize)) xext = expandarr(x, windsize-1) #Note: expandarr increases the array size by 2*(windsize-1) #sl = slice(2*(windsize-1)+1+lead or None, -(2*(windsize-1)+lead)+1 or None) print(sl) if xext.ndim == 1: return np.correlate(xext**k, avgkern, 'full')[sl] #return np.correlate(xext**k, avgkern, 'same')[windsize-lead:-(windsize+lead)] else: print(xext.shape) print(avgkern[:,None].shape) # try first with 2d along columns, possibly ndim with axis return signal.correlate(xext**k, avgkern[:,None], 'full')[sl,:]
#x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,[1],'full') #x=0.5**np.arange(3);np.correlate(x,x,'same') ##>>> x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') ## ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> xo ##xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> x=np.ones(10);xo=x-x.mean();a=np.correlate(xo,xo,'full') ##>>> xo=np.ones(10);d=np.correlate(xo,xo,'full') ##>>> d ##array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 9., ## 8., 7., 6., 5., 4., 3., 2., 1.]) ##def ccovf(): ## pass ## #x=0.5**np.arange(10);xm=x-x.mean();a=np.correlate(xm,xo,'full') __all__ = ['movorder', 'movmean', 'movvar', 'movmoment'] if __name__ == '__main__': print('\ncheckin moving mean and variance') nobs = 10 x = np.arange(nobs) ws = 3 ave = np.array([ 0., 1/3., 1., 2., 3., 4., 5., 6., 7., 8., 26/3., 9]) va = np.array([[ 0. , 0. ], [ 0.22222222, 0.88888889], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.66666667, 2.66666667], [ 0.22222222, 0.88888889], [ 0. , 0. ]]) ave2d = np.c_[ave, 2*ave] print(movmean(x, windowsize=ws, lag='lagged')) print(movvar(x, windowsize=ws, lag='lagged')) print([np.var(x[i-ws:i]) for i in range(ws, nobs)]) m1 = movmoment(x, 1, windowsize=3, lag='lagged') m2 = movmoment(x, 2, windowsize=3, lag='lagged') print(m1) print(m2) print(m2 - m1*m1) # this implicitly also tests moment assert_array_almost_equal(va[ws-1:,0], movvar(x, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,0], movvar(x, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,0], movvar(x, windowsize=ws, lag='lagged')) print('\nchecking moving moment for 2d (columns only)') x2d = np.c_[x, 2*x] print(movmoment(x2d, 1, windowsize=3, lag='centered')) print(movmean(x2d, windowsize=ws, lag='lagged')) print(movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(va[ws-1:,:], movvar(x2d, windowsize=3, lag='leading')) assert_array_almost_equal(va[ws//2:-ws//2+1,:], movvar(x2d, windowsize=3, lag='centered')) assert_array_almost_equal(va[:-ws+1,:], movvar(x2d, windowsize=ws, lag='lagged')) assert_array_almost_equal(ave2d[ws-1:], movmoment(x2d, 1, windowsize=3, lag='leading')) assert_array_almost_equal(ave2d[ws//2:-ws//2+1], movmoment(x2d, 1, windowsize=3, lag='centered')) assert_array_almost_equal(ave2d[:-ws+1], movmean(x2d, windowsize=ws, lag='lagged')) from scipy import ndimage print(ndimage.filters.correlate1d(x2d, np.array([1,1,1])/3., axis=0)) #regression test check xg = np.array([ 0. , 0.1, 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5]) assert_array_almost_equal(xg, movmean(np.arange(100), 10,'lagged')) xd = np.array([ 0.3, 0.6, 1. , 1.5, 2.1, 2.8, 3.6, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5, 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5, 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5, 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5, 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.4, 96.2, 96.9, 97.5, 98. , 98.4, 98.7, 98.9, 99. ]) assert_array_almost_equal(xd, movmean(np.arange(100), 10,'leading')) xc = np.array([ 1.36363636, 1.90909091, 2.54545455, 3.27272727, 4.09090909, 5. , 6. , 7. , 8. , 9. , 10. , 11. , 12. , 13. , 14. , 15. , 16. , 17. , 18. , 19. , 20. , 21. , 22. , 23. , 24. , 25. , 26. , 27. , 28. , 29. , 30. , 31. , 32. , 33. , 34. , 35. , 36. , 37. , 38. , 39. , 40. , 41. , 42. , 43. , 44. , 45. , 46. , 47. , 48. , 49. , 50. , 51. , 52. , 53. , 54. , 55. , 56. , 57. , 58. , 59. , 60. , 61. , 62. , 63. , 64. , 65. , 66. , 67. , 68. , 69. , 70. , 71. , 72. , 73. , 74. , 75. , 76. , 77. , 78. , 79. , 80. , 81. , 82. , 83. , 84. , 85. , 86. , 87. , 88. , 89. , 90. , 91. , 92. , 93. , 94. , 94.90909091, 95.72727273, 96.45454545, 97.09090909, 97.63636364]) assert_array_almost_equal(xc, movmean(np.arange(100), 11,'centered'))

Last update: Jan 20, 2025