Source code for statsmodels.tsa.base.prediction
import numpy as np
import pandas as pd
from scipy import stats
[docs]
class PredictionResults:
"""
Prediction results
Parameters
----------
predicted_mean : {ndarray, Series, DataFrame}
The predicted mean values
var_pred_mean : {ndarray, Series, DataFrame}
The variance of the predicted mean values
dist : {None, "norm", "t", rv_frozen}
The distribution to use when constructing prediction intervals.
Default is normal.
df : int, optional
The degree of freedom parameter for the t. Not used if dist is None,
"norm" or a callable.
row_labels : {Sequence[Hashable], pd.Index}
Row labels to use for the summary frame. If None, attempts to read the
index of ``predicted_mean``
"""
def __init__(
self,
predicted_mean,
var_pred_mean,
dist=None,
df=None,
row_labels=None,
):
self._predicted_mean = np.asarray(predicted_mean)
self._var_pred_mean = np.asarray(var_pred_mean)
self._df = df
self._row_labels = row_labels
if row_labels is None:
self._row_labels = getattr(predicted_mean, "index", None)
self._use_pandas = self._row_labels is not None
if dist != "t" and df is not None:
raise ValueError('df must be None when dist is not "t"')
if dist is None or dist == "norm":
self.dist = stats.norm
self.dist_args = ()
elif dist == "t":
self.dist = stats.t
self.dist_args = (self._df,)
elif isinstance(dist, stats.distributions.rv_frozen):
self.dist = dist
self.dist_args = ()
else:
raise ValueError('dist must be a None, "norm", "t" or a callable.')
def _wrap_pandas(self, value, name=None, columns=None):
if not self._use_pandas:
return value
if value.ndim == 1:
return pd.Series(value, index=self._row_labels, name=name)
return pd.DataFrame(value, index=self._row_labels, columns=columns)
@property
def row_labels(self):
"""The row labels used in pandas-types."""
return self._row_labels
@property
def predicted_mean(self):
"""The predicted mean"""
return self._wrap_pandas(self._predicted_mean, "predicted_mean")
@property
def var_pred_mean(self):
"""The variance of the predicted mean"""
if self._var_pred_mean.ndim > 2:
return self._var_pred_mean
return self._wrap_pandas(self._var_pred_mean, "var_pred_mean")
@property
def se_mean(self):
"""The standard deviation of the predicted mean"""
ndim = self._var_pred_mean.ndim
if ndim == 1:
values = np.sqrt(self._var_pred_mean)
elif ndim == 3:
values = np.sqrt(self._var_pred_mean.T.diagonal())
else:
raise NotImplementedError("var_pre_mean must be 1 or 3 dim")
return self._wrap_pandas(values, "mean_se")
@property
def tvalues(self):
"""The ratio of the predicted mean to its standard deviation"""
val = self.predicted_mean / self.se_mean
if isinstance(val, pd.Series):
val.name = "tvalues"
return val
[docs]
def t_test(self, value=0, alternative="two-sided"):
"""
z- or t-test for hypothesis that mean is equal to value
Parameters
----------
value : array_like
value under the null hypothesis
alternative : str
'two-sided', 'larger', 'smaller'
Returns
-------
stat : ndarray
test statistic
pvalue : ndarray
p-value of the hypothesis test, the distribution is given by
the attribute of the instance, specified in `__init__`. Default
if not specified is the normal distribution.
"""
# assumes symmetric distribution
stat = (self.predicted_mean - value) / self.se_mean
if alternative in ["two-sided", "2-sided", "2s"]:
pvalue = self.dist.sf(np.abs(stat), *self.dist_args) * 2
elif alternative in ["larger", "l"]:
pvalue = self.dist.sf(stat, *self.dist_args)
elif alternative in ["smaller", "s"]:
pvalue = self.dist.cdf(stat, *self.dist_args)
else:
raise ValueError("invalid alternative")
return stat, pvalue
[docs]
def conf_int(self, alpha=0.05):
"""
Confidence interval construction for the predicted mean.
This is currently only available for t and z tests.
Parameters
----------
alpha : float, optional
The significance level for the prediction interval.
The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pi : {ndarray, DataFrame}
The array has the lower and the upper limit of the prediction
interval in the columns.
"""
se = self.se_mean
q = self.dist.ppf(1 - alpha / 2.0, *self.dist_args)
lower = self.predicted_mean - q * se
upper = self.predicted_mean + q * se
ci = np.column_stack((lower, upper))
if self._use_pandas:
return self._wrap_pandas(ci, columns=["lower", "upper"])
return ci
[docs]
def summary_frame(self, alpha=0.05):
"""
Summary frame of mean, variance and confidence interval.
Returns
-------
DataFrame
DataFrame containing four columns:
* mean
* mean_se
* mean_ci_lower
* mean_ci_upper
Notes
-----
Fixes alpha to 0.05 so that the confidence interval should have 95%
coverage.
"""
ci_mean = np.asarray(self.conf_int(alpha=alpha))
lower, upper = ci_mean[:, 0], ci_mean[:, 1]
to_include = {
"mean": self.predicted_mean,
"mean_se": self.se_mean,
"mean_ci_lower": lower,
"mean_ci_upper": upper,
}
return pd.DataFrame(to_include)
Last update:
Dec 16, 2024