Source code for statsmodels.tsa.forecasting.stl

from statsmodels.compat.pandas import Substitution, is_int_index

import datetime as dt
from typing import Any, Optional, Union

import numpy as np
import pandas as pd

from statsmodels.base.data import PandasData
from statsmodels.iolib.summary import SimpleTable, Summary
from statsmodels.tools.docstring import Docstring, Parameter, indent
from statsmodels.tsa.base.prediction import PredictionResults
from statsmodels.tsa.base.tsa_model import get_index_loc, get_prediction_index
from statsmodels.tsa.seasonal import STL, DecomposeResult
from statsmodels.tsa.statespace.kalman_filter import _check_dynamic

DateLike = Union[int, str, dt.datetime, pd.Timestamp, np.datetime64]

ds = Docstring(STL.__doc__)
ds.insert_parameters(
    "endog",
    Parameter(
        "model",
        "Model",
        [
            "The model used to forecast endog after the seasonality has been "
            "removed using STL"
        ],
    ),
)
ds.insert_parameters(
    "model",
    Parameter(
        "model_kwargs",
        "dict[str, Any]",
        [
            "Any additional arguments needed to initialized the model using "
            "the residuals produced by subtracting the seasonality."
        ],
    ),
)
_stl_forecast_params = ds.extract_parameters(
    [
        "endog",
        "model",
        "model_kwargs",
        "period",
        "seasonal",
        "trend",
        "low_pass",
        "seasonal_deg",
        "trend_deg",
        "low_pass_deg",
        "robust",
        "seasonal_jump",
        "trend_jump",
        "low_pass_jump",
    ]
)

ds = Docstring(STL.fit.__doc__)
_fit_params = ds.extract_parameters(["inner_iter", "outer_iter"])


[docs] @Substitution(stl_forecast_params=indent(_stl_forecast_params, " ")) class STLForecast: r""" Model-based forecasting using STL to remove seasonality Forecasts are produced by first subtracting the seasonality estimated using STL, then forecasting the deseasonalized data using a time-series model, for example, ARIMA. Parameters ---------- %(stl_forecast_params)s See Also -------- statsmodels.tsa.arima.model.ARIMA ARIMA modeling. statsmodels.tsa.ar_model.AutoReg Autoregressive modeling supporting complex deterministics. statsmodels.tsa.exponential_smoothing.ets.ETSModel Additive and multiplicative exponential smoothing with trend. statsmodels.tsa.statespace.exponential_smoothing.ExponentialSmoothing Additive exponential smoothing with trend. Notes ----- If :math:`\hat{S}_t` is the seasonal component, then the deseasonalize series is constructed as .. math:: Y_t - \hat{S}_t The trend component is not removed, and so the time series model should be capable of adequately fitting and forecasting the trend if present. The out-of-sample forecasts of the seasonal component are produced as .. math:: \hat{S}_{T + h} = \hat{S}_{T - k} where :math:`k = m - h + m \lfloor (h-1)/m \rfloor` tracks the period offset in the full cycle of 1, 2, ..., m where m is the period length. This class is mostly a convenience wrapper around ``STL`` and a user-specified model. The model is assumed to follow the standard statsmodels pattern: * ``fit`` is used to estimate parameters and returns a results instance, ``results``. * ``results`` must exposes a method ``forecast(steps, **kwargs)`` that produces out-of-sample forecasts. * ``results`` may also exposes a method ``get_prediction`` that produces both in- and out-of-sample predictions. See the notebook `Seasonal Decomposition <../examples/notebooks/generated/stl_decomposition.html>`__ for an overview. Examples -------- >>> import numpy as np >>> import pandas as pd >>> from statsmodels.tsa.api import STLForecast >>> from statsmodels.tsa.arima.model import ARIMA >>> from statsmodels.datasets import macrodata >>> ds = macrodata.load_pandas() >>> data = np.log(ds.data.m1) >>> base_date = f"{int(ds.data.year[0])}-{3*int(ds.data.quarter[0])+1}-1" >>> data.index = pd.date_range(base_date, periods=data.shape[0], freq="QS") Generate forecasts from an ARIMA >>> stlf = STLForecast(data, ARIMA, model_kwargs={"order": (2, 1, 0)}) >>> res = stlf.fit() >>> forecasts = res.forecast(12) Generate forecasts from an Exponential Smoothing model with trend >>> from statsmodels.tsa.statespace import exponential_smoothing >>> ES = exponential_smoothing.ExponentialSmoothing >>> config = {"trend": True} >>> stlf = STLForecast(data, ES, model_kwargs=config) >>> res = stlf.fit() >>> forecasts = res.forecast(12) """ def __init__( self, endog, model, *, model_kwargs=None, period=None, seasonal=7, trend=None, low_pass=None, seasonal_deg=1, trend_deg=1, low_pass_deg=1, robust=False, seasonal_jump=1, trend_jump=1, low_pass_jump=1, ): self._endog = endog self._stl_kwargs = dict( period=period, seasonal=seasonal, trend=trend, low_pass=low_pass, seasonal_deg=seasonal_deg, trend_deg=trend_deg, low_pass_deg=low_pass_deg, robust=robust, seasonal_jump=seasonal_jump, trend_jump=trend_jump, low_pass_jump=low_pass_jump, ) self._model = model self._model_kwargs = {} if model_kwargs is None else model_kwargs if not hasattr(model, "fit"): raise AttributeError("model must expose a ``fit`` method.")
[docs] @Substitution(fit_params=indent(_fit_params, " " * 8)) def fit(self, *, inner_iter=None, outer_iter=None, fit_kwargs=None): """ Estimate STL and forecasting model parameters. Parameters ----------\n%(fit_params)s fit_kwargs : dict[str, Any] Any additional keyword arguments to pass to ``model``'s ``fit`` method when estimating the model on the decomposed residuals. Returns ------- STLForecastResults Results with forecasting methods. """ fit_kwargs = {} if fit_kwargs is None else fit_kwargs stl = STL(self._endog, **self._stl_kwargs) stl_fit: DecomposeResult = stl.fit( inner_iter=inner_iter, outer_iter=outer_iter ) model_endog = stl_fit.trend + stl_fit.resid mod = self._model(model_endog, **self._model_kwargs) res = mod.fit(**fit_kwargs) if not hasattr(res, "forecast"): raise AttributeError( "The model's result must expose a ``forecast`` method." ) return STLForecastResults(stl, stl_fit, mod, res, self._endog)
[docs] class STLForecastResults: """ Results for forecasting using STL to remove seasonality Parameters ---------- stl : STL The STL instance used to decompose the data. result : DecomposeResult The result of applying STL to the data. model : Model The time series model used to model the non-seasonal dynamics. model_result : Results Model results instance supporting, at a minimum, ``forecast``. """ def __init__( self, stl: STL, result: DecomposeResult, model, model_result, endog ) -> None: self._stl = stl self._result = result self._model = model self._model_result = model_result self._endog = np.asarray(endog) self._nobs = self._endog.shape[0] self._index = getattr(endog, "index", pd.RangeIndex(self._nobs)) if not ( isinstance(self._index, (pd.DatetimeIndex, pd.PeriodIndex)) or is_int_index(self._index) ): try: self._index = pd.to_datetime(self._index) except ValueError: self._index = pd.RangeIndex(self._nobs) @property def period(self) -> int: """The period of the seasonal component""" return self._stl.period @property def stl(self) -> STL: """The STL instance used to decompose the time series""" return self._stl @property def result(self) -> DecomposeResult: """The result of applying STL to the data""" return self._result @property def model(self) -> Any: """The model fit to the additively deseasonalized data""" return self._model @property def model_result(self) -> Any: """The result class from the estimated model""" return self._model_result
[docs] def summary(self) -> Summary: """ Summary of both the STL decomposition and the model fit. Returns ------- Summary The summary of the model fit and the STL decomposition. Notes ----- Requires that the model's result class supports ``summary`` and returns a ``Summary`` object. """ if not hasattr(self._model_result, "summary"): raise AttributeError( "The model result does not have a summary attribute." ) summary: Summary = self._model_result.summary() if not isinstance(summary, Summary): raise TypeError( "The model result's summary is not a Summary object." ) summary.tables[0].title = ( "STL Decomposition and " + summary.tables[0].title ) config = self._stl.config left_keys = ("period", "seasonal", "robust") left_data = [] left_stubs = [] right_data = [] right_stubs = [] for key in config: new = key.capitalize() new = new.replace("_", " ") if new in ("Trend", "Low Pass"): new += " Length" is_left = any(key.startswith(val) for val in left_keys) new += ":" stub = f"{new:<23s}" val = f"{str(config[key]):>13s}" if is_left: left_stubs.append(stub) left_data.append([val]) else: right_stubs.append(" " * 6 + stub) right_data.append([val]) tab = SimpleTable( left_data, stubs=tuple(left_stubs), title="STL Configuration" ) tab.extend_right(SimpleTable(right_data, stubs=right_stubs)) summary.tables.append(tab) return summary
def _get_seasonal_prediction( self, start: Optional[DateLike], end: Optional[DateLike], dynamic: Union[bool, DateLike], ) -> np.ndarray: """ Get STLs seasonal in- and out-of-sample predictions Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. Returns ------- ndarray Array containing the seasibak predictions. """ data = PandasData(pd.Series(self._endog), index=self._index) if start is None: start = 0 (start, end, out_of_sample, prediction_index) = get_prediction_index( start, end, self._nobs, self._index, data=data ) if isinstance(dynamic, (str, dt.datetime, pd.Timestamp)): dynamic, _, _ = get_index_loc(dynamic, self._index) dynamic = dynamic - start elif dynamic is True: dynamic = 0 elif dynamic is False: # If `dynamic=False`, then no dynamic predictions dynamic = None nobs = self._nobs dynamic, _ = _check_dynamic(dynamic, start, end, nobs) in_sample_end = end + 1 if dynamic is None else dynamic seasonal = np.asarray(self._result.seasonal) predictions = seasonal[start:in_sample_end] oos = np.empty((0,)) if dynamic is not None: num = out_of_sample + end + 1 - dynamic oos = self._seasonal_forecast(num, None, offset=dynamic) elif out_of_sample: oos = self._seasonal_forecast(out_of_sample, None) oos_start = max(start - nobs, 0) oos = oos[oos_start:] predictions = np.r_[predictions, oos] return predictions def _seasonal_forecast( self, steps: int, index: Optional[pd.Index], offset=None ) -> Union[pd.Series, np.ndarray]: """ Get the seasonal component of the forecast Parameters ---------- steps : int The number of steps required. index : pd.Index A pandas index to use. If None, returns an ndarray. offset : int The index of the first out-of-sample observation. If None, uses nobs. Returns ------- seasonal : {ndarray, Series} The seasonal component. """ period = self.period seasonal = np.asarray(self._result.seasonal) offset = self._nobs if offset is None else offset seasonal = seasonal[offset - period : offset] seasonal = np.tile(seasonal, steps // period + ((steps % period) != 0)) seasonal = seasonal[:steps] if index is not None: seasonal = pd.Series(seasonal, index=index) return seasonal
[docs] def forecast( self, steps: int = 1, **kwargs: dict[str, Any] ) -> Union[np.ndarray, pd.Series]: """ Out-of-sample forecasts Parameters ---------- steps : int, str, or datetime, optional If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. Default **kwargs Additional arguments may required for forecasting beyond the end of the sample. These arguments are passed into the time series model results' ``forecast`` method. Returns ------- forecast : {ndarray, Series} Out of sample forecasts """ forecast = self._model_result.forecast(steps=steps, **kwargs) index = forecast.index if isinstance(forecast, pd.Series) else None return forecast + self._seasonal_forecast(steps, index)
[docs] def get_prediction( self, start: Optional[DateLike] = None, end: Optional[DateLike] = None, dynamic: Union[bool, DateLike] = False, **kwargs: dict[str, Any], ): """ In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. **kwargs Additional arguments may required for forecasting beyond the end of the sample. These arguments are passed into the time series model results' ``get_prediction`` method. Returns ------- PredictionResults PredictionResults instance containing in-sample predictions, out-of-sample forecasts, and prediction intervals. """ pred = self._model_result.get_prediction( start=start, end=end, dynamic=dynamic, **kwargs ) seasonal_prediction = self._get_seasonal_prediction( start, end, dynamic ) mean = pred.predicted_mean + seasonal_prediction try: var_pred_mean = pred.var_pred_mean except (AttributeError, NotImplementedError): # Allow models that do not return var_pred_mean import warnings warnings.warn( "The variance of the predicted mean is not available using " f"the {self.model.__class__.__name__} model class.", UserWarning, stacklevel=2, ) var_pred_mean = np.nan + mean.copy() return PredictionResults( mean, var_pred_mean, dist="norm", row_labels=pred.row_labels )

Last update: Jan 20, 2025