Prediction (out of sample)¶
[1]:
%matplotlib inline
[2]:
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=14)
Artificial data¶
[3]:
nsample = 50
sig = 0.25
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, np.sin(x1), (x1 - 5) ** 2))
X = sm.add_constant(X)
beta = [5.0, 0.5, 0.5, -0.02]
y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)
Estimation¶
[4]:
olsmod = sm.OLS(y, X)
olsres = olsmod.fit()
print(olsres.summary())
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.984
Model: OLS Adj. R-squared: 0.983
Method: Least Squares F-statistic: 926.1
Date: Thu, 14 Nov 2024 Prob (F-statistic): 4.07e-41
Time: 16:50:03 Log-Likelihood: 0.57884
No. Observations: 50 AIC: 6.842
Df Residuals: 46 BIC: 14.49
Df Model: 3
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [0.025 0.975]
------------------------------------------------------------------------------
const 4.9879 0.085 58.684 0.000 4.817 5.159
x1 0.5143 0.013 39.233 0.000 0.488 0.541
x2 0.5772 0.052 11.202 0.000 0.474 0.681
x3 -0.0214 0.001 -18.625 0.000 -0.024 -0.019
==============================================================================
Omnibus: 0.033 Durbin-Watson: 2.083
Prob(Omnibus): 0.984 Jarque-Bera (JB): 0.167
Skew: -0.054 Prob(JB): 0.920
Kurtosis: 2.738 Cond. No. 221.
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In-sample prediction¶
[5]:
ypred = olsres.predict(X)
print(ypred)
[ 4.45196936 4.97491945 5.45308389 5.85500398 6.16057432 6.36434602
6.47642199 6.52079702 6.53141553 6.54659459 6.60272852 6.72830942
6.93924602 7.23624986 7.60471845 8.01713438 8.43758637 8.82766938
9.15279446 9.38787161 9.52143199 9.55751223 9.51499122 9.42448837
9.32333289 9.24943077 9.23503686 9.30145556 9.45554052 9.68856861
9.97767312 10.28960071 10.58617479 10.83056787 10.99335221 11.05733467
11.02038155 10.89576913 10.7100024 10.49846039 10.29958346 10.14855771
10.07153396 10.08133124 10.17533072 10.33590589 10.53331862 10.730605
10.88964845 10.97744212]
Create a new sample of explanatory variables Xnew, predict and plot¶
[6]:
x1n = np.linspace(20.5, 25, 10)
Xnew = np.column_stack((x1n, np.sin(x1n), (x1n - 5) ** 2))
Xnew = sm.add_constant(Xnew)
ynewpred = olsres.predict(Xnew) # predict out of sample
print(ynewpred)
[10.95610938 10.78318005 10.48129102 10.10202891 9.71329988 9.38270381
9.16098349 9.06960105 9.09548322 9.1942222 ]
Plot comparison¶
[7]:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(x1, y, "o", label="Data")
ax.plot(x1, y_true, "b-", label="True")
ax.plot(np.hstack((x1, x1n)), np.hstack((ypred, ynewpred)), "r", label="OLS prediction")
ax.legend(loc="best")
[7]:
<matplotlib.legend.Legend at 0x7f791238dc00>
Predicting with Formulas¶
Using formulas can make both estimation and prediction a lot easier
[8]:
from statsmodels.formula.api import ols
data = {"x1": x1, "y": y}
res = ols("y ~ x1 + np.sin(x1) + I((x1-5)**2)", data=data).fit()
We use the I
to indicate use of the Identity transform. Ie., we do not want any expansion magic from using **2
[9]:
res.params
[9]:
Intercept 4.987862
x1 0.514282
np.sin(x1) 0.577233
I((x1 - 5) ** 2) -0.021436
dtype: float64
Now we only have to pass the single variable and we get the transformed right-hand side variables automatically
[10]:
res.predict(exog=dict(x1=x1n))
[10]:
0 10.956109
1 10.783180
2 10.481291
3 10.102029
4 9.713300
5 9.382704
6 9.160983
7 9.069601
8 9.095483
9 9.194222
dtype: float64
Last update:
Nov 14, 2024