Trends and cycles in unemployment¶
Here we consider three methods for separating a trend and cycle in economic data. Supposing we have a time series
where
This notebook demonstrates applying these models to separate trend from cycle in the U.S. unemployment rate.
[1]:
%matplotlib inline
[2]:
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
[3]:
from pandas_datareader.data import DataReader
endog = DataReader('UNRATE', 'fred', start='1954-01-01')
endog.index.freq = endog.index.inferred_freq
Hodrick-Prescott (HP) filter¶
The first method is the Hodrick-Prescott filter, which can be applied to a data series in a very straightforward method. Here we specify the parameter
[4]:
hp_cycle, hp_trend = sm.tsa.filters.hpfilter(endog, lamb=129600)
Unobserved components and ARIMA model (UC-ARIMA)¶
The next method is an unobserved components model, where the trend is modeled as a random walk and the cycle is modeled with an ARIMA model - in particular, here we use an AR(4) model. The process for the time series can be written as:
where
[5]:
mod_ucarima = sm.tsa.UnobservedComponents(endog, 'rwalk', autoregressive=4)
# Here the powell method is used, since it achieves a
# higher loglikelihood than the default L-BFGS method
res_ucarima = mod_ucarima.fit(method='powell', disp=False)
print(res_ucarima.summary())
Unobserved Components Results
==============================================================================
Dep. Variable: UNRATE No. Observations: 854
Model: random walk Log Likelihood -463.181
+ AR(4) AIC 938.361
Date: Thu, 27 Mar 2025 BIC 966.854
Time: 11:36:53 HQIC 949.274
Sample: 01-01-1954
- 02-01-2025
Covariance Type: opg
================================================================================
coef std err z P>|z| [0.025 0.975]
--------------------------------------------------------------------------------
sigma2.level 2.013e-05 0.012 0.002 0.999 -0.024 0.024
sigma2.ar 0.1743 0.016 10.950 0.000 0.143 0.206
ar.L1 1.0262 0.019 53.859 0.000 0.989 1.064
ar.L2 -0.1063 0.016 -6.530 0.000 -0.138 -0.074
ar.L3 0.0741 0.024 3.149 0.002 0.028 0.120
ar.L4 -0.0246 0.019 -1.287 0.198 -0.062 0.013
===================================================================================
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6861314.60
Prob(Q): 0.97 Prob(JB): 0.00
Heteroskedasticity (H): 9.07 Skew: 17.58
Prob(H) (two-sided): 0.00 Kurtosis: 440.97
===================================================================================
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
Unobserved components with stochastic cycle (UC)¶
The final method is also an unobserved components model, but where the cycle is modeled explicitly.
[6]:
mod_uc = sm.tsa.UnobservedComponents(
endog, 'rwalk',
cycle=True, stochastic_cycle=True, damped_cycle=True,
)
# Here the powell method gets close to the optimum
res_uc = mod_uc.fit(method='powell', disp=False)
# but to get to the highest loglikelihood we do a
# second round using the L-BFGS method.
res_uc = mod_uc.fit(res_uc.params, disp=False)
print(res_uc.summary())
Unobserved Components Results
=====================================================================================
Dep. Variable: UNRATE No. Observations: 854
Model: random walk Log Likelihood -471.958
+ damped stochastic cycle AIC 951.916
Date: Thu, 27 Mar 2025 BIC 970.901
Time: 11:36:54 HQIC 959.188
Sample: 01-01-1954
- 02-01-2025
Covariance Type: opg
===================================================================================
coef std err z P>|z| [0.025 0.975]
-----------------------------------------------------------------------------------
sigma2.level 0.0193 0.034 0.559 0.576 -0.048 0.087
sigma2.cycle 0.1513 0.034 4.487 0.000 0.085 0.217
frequency.cycle 0.0436 0.030 1.471 0.141 -0.014 0.102
damping.cycle 0.9559 0.019 50.399 0.000 0.919 0.993
===================================================================================
Ljung-Box (L1) (Q): 1.58 Jarque-Bera (JB): 6764197.84
Prob(Q): 0.21 Prob(JB): 0.00
Heteroskedasticity (H): 9.44 Skew: 17.44
Prob(H) (two-sided): 0.00 Kurtosis: 438.37
===================================================================================
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
Graphical comparison¶
The output of each of these models is an estimate of the trend component
[7]:
fig, axes = plt.subplots(2, figsize=(13,5));
axes[0].set(title='Level/trend component')
axes[0].plot(endog.index, res_uc.level.smoothed, label='UC')
axes[0].plot(endog.index, res_ucarima.level.smoothed, label='UC-ARIMA(2,0)')
axes[0].plot(hp_trend, label='HP Filter')
axes[0].legend(loc='upper left')
axes[0].grid()
axes[1].set(title='Cycle component')
axes[1].plot(endog.index, res_uc.cycle.smoothed, label='UC')
axes[1].plot(endog.index, res_ucarima.autoregressive.smoothed, label='UC-ARIMA(2,0)')
axes[1].plot(hp_cycle, label='HP Filter')
axes[1].legend(loc='upper left')
axes[1].grid()
fig.tight_layout();
