statsmodels.base.distributed_estimation.DistributedModel¶
-
class statsmodels.base.distributed_estimation.DistributedModel(partitions, model_class=
None, init_kwds=None, estimation_method=None, estimation_kwds=None, join_method=None, join_kwds=None, results_class=None, results_kwds=None)[source]¶ Distributed model class
- Parameters:¶
- partitions : scalar¶
The number of partitions that the data will be split into.
- model_class : statsmodels model class¶
The model class which will be used for estimation. If None this defaults to OLS.
- init_kwds : dict-like or None¶
Keywords needed for initializing the model, in addition to endog and exog.
- init_kwds_generator : generator or None
Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS
- estimation_method : function or None¶
The method that performs the estimation for each partition. If None this defaults to _est_regularized_debiased.
- estimation_kwds : dict-like or None¶
Keywords to be passed to estimation_method.
- join_method : function or None¶
The method used to recombine the results from each partition. If None this defaults to _join_debiased.
- join_kwds : dict-like or None¶
Keywords to be passed to join_method.
- results_class : results class or None¶
The class of results that should be returned. If None this defaults to RegularizedResults.
- results_kwds : dict-like or None¶
Keywords to be passed to results class.
Notes
Examples
Methods
fit(data_generator[, fit_kwds, ...])Performs the distributed estimation using the corresponding DistributedModel
fit_joblib(data_generator, fit_kwds, ...[, ...])Performs the distributed estimation in parallel using joblib
fit_sequential(data_generator, fit_kwds[, ...])Sequentially performs the distributed estimation using the corresponding DistributedModel