statsmodels.discrete.discrete_model.MNLogit.score_obs¶
- MNLogit.score_obs(params)[source]¶
Jacobian matrix for multinomial logit model log-likelihood
- Parameters:¶
- params
ndarray
The parameters of the multinomial logit model.
- params
- Returns:¶
- jacarray_like
The derivative of the loglikelihood for each observation evaluated at params .
Notes
\[\frac{\partial\ln L_{i}}{\partial\beta_{j}}=\left(d_{ij}-\frac{\exp\left(\beta_{j}^{\prime}x_{i}\right)}{\sum_{k=0}^{J}\exp\left(\beta_{k}^{\prime}x_{i}\right)}\right)x_{i}\]for \(j=1,...,J\), for observations \(i=1,...,n\)
In the multinomial model the score vector is K x (J-1) but is returned as a flattened array. The Jacobian has the observations in rows and the flattened array of derivatives in columns.
Last update:
Dec 16, 2024