statsmodels.graphics.regressionplots.plot_regress_exog

statsmodels.graphics.regressionplots.plot_regress_exog(results, exog_idx, fig=None)[source]

Plot regression results against one regressor.

This plots four graphs in a 2 by 2 figure: ‘endog versus exog’, ‘residuals versus exog’, ‘fitted versus exog’ and ‘fitted plus residual versus exog’

Parameters:
resultsresult instance

A result instance with resid, model.endog and model.exog as attributes.

exog_idxint or str

Name or index of regressor in exog matrix.

figFigure, optional

If given, this figure is simply returned. Otherwise a new figure is created.

Returns:
Figure

The value of fig if provided. Otherwise a new instance.

Examples

Load the Statewide Crime data set and build a model with regressors including the rate of high school graduation (hs_grad), population in urban areas (urban), households below poverty line (poverty), and single person households (single). Outcome variable is the murder rate (murder).

Build a 2 by 2 figure based on poverty showing fitted versus actual murder rate, residuals versus the poverty rate, partial regression plot of poverty, and CCPR plot for poverty rate.

>>> import statsmodels.api as sm
>>> import matplotlib.pyplot as plt
>>> import statsmodels.formula.api as smf
>>> fig = plt.figure(figsize=(8, 6))
>>> crime_data = sm.datasets.statecrime.load_pandas()
>>> results = smf.ols('murder ~ hs_grad + urban + poverty + single',
...                   data=crime_data.data).fit()
>>> sm.graphics.plot_regress_exog(results, 'poverty', fig=fig)
>>> plt.show()

(Source code, png, hires.png, pdf)

../_images/graphics_regression_regress_exog.png

Last update: Jan 20, 2025