statsmodels.regression.linear_model.OLSResults.outlier_test¶
-
OLSResults.outlier_test(method=
'bonf'
, alpha=0.05
, labels=None
, order=False
, cutoff=None
)[source]¶ Test observations for outliers according to method.
- Parameters:¶
- method
str
The method to use in the outlier test. Must be one of:
bonferroni : one-step correction
sidak : one-step correction
holm-sidak :
holm :
simes-hochberg :
hommel :
fdr_bh : Benjamini/Hochberg
fdr_by : Benjamini/Yekutieli
See statsmodels.stats.multitest.multipletests for details.
- alpha
float
The familywise error rate (FWER).
- labels
None
or array_like If labels is not None, then it will be used as index to the returned pandas DataFrame. See also Returns below.
- orderbool
Whether or not to order the results by the absolute value of the studentized residuals. If labels are provided they will also be sorted.
- cutoff
None
orfloat
in
[0, 1] If cutoff is not None, then the return only includes observations with multiple testing corrected p-values strictly below the cutoff. The returned array or dataframe can be empty if t.
- method
- Returns:¶
- array_like
Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method.
Notes
The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1.