statsmodels.sandbox.tsa.fftarma.ArmaFft.invpowerspd¶
- ArmaFft.invpowerspd(n)[source]¶
autocovariance from spectral density
scaling is correct, but n needs to be large for numerical accuracy maybe padding with zero in fft would be faster without slicing it returns 2-sided autocovariance with fftshift
>>> ArmaFft([1, -0.5], [1., 0.4], 40).invpowerspd(2**8)[:10] array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625]) >>> ArmaFft([1, -0.5], [1., 0.4], 40).acovf(10) array([ 2.08 , 1.44 , 0.72 , 0.36 , 0.18 , 0.09 , 0.045 , 0.0225 , 0.01125 , 0.005625])
Last update:
Dec 16, 2024